SUMMARY REPORT 145 GARDENIA DRIVE (FORMERLY 1061 GARDENIA DRIVE) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

JUNE 2021

SUMMARY REPORT 145 GARDENIA DRIVE (FORMERLY 1061 GARDENIA DRIVE) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016 CTO WE52 JUNE 2021

Summary Report 145 Gardenia Drive (Formerly 1061 Gardenia Drive) Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort June 2021

Table of Contents

1.0	INTRODUCTION	1
1.1 1.2	BACKGROUND INFORMATION UST REMOVAL AND ASSESSMENT PROCESS	1 2
2.0	SAMPLING ACTIVITIES AND RESULTS	3
2.1	UST REMOVAL AND SOIL SAMPLING	4
2.2	SOIL ANALYTICAL RESULTS	4 5
2.4 2.5	GROUNDWATER ANALYTICAL RESULTS	5 6
2.6	SOIL GAS ANALYTICAL RESULTS	6
3.0	PROPERTY STATUS	7
4.0	REFERENCES	7

Tables

Table 1	Laboratory	Analytical	Results - Soil

- Table 2
 Laboratory Analytical Results Groundwater
- Table 3 Laboratory Analytical Results Vapor

Appendices

- Appendix A Multi-Media Selection Process for LBMH
- Appendix B UST Assessment Reports
- Appendix C Laboratory Analytical Reports Groundwater
- Appendix D Laboratory Analytical Report Vapor
- Appendix E Regulatory Correspondence

List of Acronyms

bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
СТО	Contract Task Order
COPC	constituents of potential concern
ft	feet
IDIQ	Indefinite Delivery, Indefinite Quantity
IGWA	Initial Groundwater Assessment
JV	Joint Venture
LBMH	Laurel Bay Military Housing
MCAS	Marine Corps Air Station
NAVFAC Mid-Lant	Naval Facilities Engineering Command Mid-Atlantic
NFA	No Further Action
PAH	polynuclear aromatic hydrocarbon
PPV	Public-Private Venture
QAPP	Quality Assurance Program Plan
RBSL	risk-based screening level
SCDHEC	South Carolina Department of Health and Environmental Control
Site	LBMH area at MCAS Beaufort, South Carolina
UFP SAP	Uniform Federal Policy Sampling and Analysis Plan
USEPA	United States Environmental Protection Agency
UST	underground storage tank
VISL	vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 145 Gardenia Drive (Formerly 1061 Gardenia Drive). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service,* (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 145 Gardenia Drive (Formerly 1061 Gardenia Drive). The sampling activities at 145 Gardenia Drive (Formerly 1061 Gardenia Drive) comprised a soil investigation, IGWA sampling, and a soil gas investigation. Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report* – *1061 Gardenia Drive* (MCAS Beaufort, 2008), in the *UST Assessment Report* – *1061 Gardenia Drive* (MCAS Beaufort, 2009) and in the *UST Assessment Report* – *1061 Gardenia Drive* (MCAS Beaufort, 2014). The UST Assessment Reports are provided in Appendix B. Details regarding the IGWA sampling activities at this site are provided in the *Investigation of Ground Water at Leaking Heating Oil UST Sites* (PANDEY Environmental, LLC, 2008), in the *Initial Groundwater Investigation Report* – *July 2013* (Resolution Consultants, 2015) and in the *Initial Groundwater Investigation Report* – *November and December 2015* (Resolution Consultants, 2016). The laboratory reports that includes the pertinent IGWA analytical results for this site are presented in Appendix C. Details regarding the vapor intrusion investigation at this site are provided in the *Technical Memorandum* – *Soil Gas Sampling Results*

– October 2014 (Resolution Consultants, 2015). The laboratory report that includes the pertinent soil gas analytical results for this site is presented in Appendix D.

2.1 UST Removal and Soil Sampling

In 2007, 2009 and 2013, three 280 gallon heating oil USTs were removed at 145 Gardenia Drive (Formerly 1061 Gardenia Drive). Tank 1 was removed from underneath the adjacent to the concrete porch on August 6, 2007. Tank 2 was removed from the front grassed area on June 9, 2009. Tank 3 was removed from the front landscaped area, adjacent to the concrete porch on July 30, 2013. The former UST locations are indicated on the figures of the UST Assessment Reports (Appendix B). The USTs was removed and properly disposed of (i.e., shipped offsite for recycling or transported to a landfill). There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Reports (Appendix B), the depths to the bases of the USTs were 6'0'' bgs (Tank 1), 5'3" bgs (Tank 2) and 4'4" bgs (Tank 3) and a single soil sample was collected for each from that depth. An additional sample was collected from the side of the excavation for Tank 1 at a depth of 4'4" bgs. The samples were collected from the fill port side of the former USTs to represent a worst case scenario and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs are presented in Table 1. A copy of the laboratory analytical data reports are included in the UST Assessment Reports presented in Appendix B. The laboratory analytical data reports include the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST locations (Tanks 1, 2 and 3) were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from the former UST locations (Tanks 1, 2 and 3) at 145 Gardenia Drive (Formerly 1061 Gardenia Drive) were greater than the SCDHEC RBSLs, which indicated further investigation was required. In letters dated August 13, 2008, August 19, 2009 and July 1, 2015, SCDHEC requested IGWAs for 145 Gardenia Drive (Formerly 1061 Gardenia Drive) to

determine if the groundwater was impacted by petroleum COPCs. SCDHEC's request letters are provided in Appendix E.

2.3 Groundwater Sampling

In 2008, 2013 and 2015, three temporary monitoring wells were installed at 145 Gardenia Drive (Formerly 1061 Gardenia Drive), in accordance with the South Carolina Well Standards and Regulations (R.61-71.H-I, updated June 24, 2016). 1061 Gardenia A was installed on July 28, 2008. TW01 was installed on July 24, 2013. TW03 was installed on November 20, 2015. In order to provide data that can be used to determine whether COPCs are migrating to underlying groundwater, the monitoring wells were placed in the same general location as the former heating oil USTs (Tanks 1, 2 and 3). The former UST locations are indicated on the figures of the UST Assessment Reports (Appendix B). Further details are provided in the *Initial Investigation of Ground Water at Leaking Heating Oil UST Sites* (PANDEY Environmental, LLC, 2008), in the *Initial Groundwater Investigation Report – July 2013* (Resolution Consultants, 2015) and in the *Initial Groundwater Investigation Report – November and December 2015* (Resolution Consultants, 2016).

The sampling strategy for this phase of the investigation required a one-time sampling event of the temporarily installed monitoring wells. Following well installation during the 2008 temporary well installation event, a groundwater sample was collected using screen point sampling methods. Following well installation and development during the 2013 and 2015 temporary well installation events, groundwater samples were collected using low-flow methods. All samples were shipped to an offsite laboratory for analysis of the petroleum COPCs. Upon completion of groundwater sampling, the temporary wells were abandoned in accordance with the South Carolina Well Standards and Regulations R.61-71 (SCDHEC, 2016). Field forms are provided in the *Investigation of Ground Water at Leaking Heating Oil UST Sites* (PANDEY Environmental, LLC, 2008), in the *Initial Groundwater Investigation Report – July 2013* (Resolution Consultants, 2015) and in the *Initial Groundwater Investigation Report – November and December 2015* (Resolution Consultants, 2016).

2.4 Groundwater Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 2. A copy of the laboratory analytical data reports are included in Appendix C.

The groundwater results collected from 145 Gardenia Drive (Formerly 1061 Gardenia Drive) were less than the SCDHEC RBSLs and the site specific groundwater VISLs (Table 2), which indicated that the groundwater was not impacted by COPCs associated with the former USTs (Tanks 1, 2 and 3) at concentrations that present a potential risk to human health and the environment.

2.5 Soil Gas Sampling

On April 27, 2017, a temporary near-slab vapor pin was installed at 145 Gardenia Drive (Formerly 1061 Gardenia Drive) in accordance with the SCDHEC approved *Uniform Federal Policy Sampling and Analysis Plan (UFP SAP) for Vapor Media, Revision 4* (Resolution Consultants, 2017). The vapor pin was placed near the house slab, underneath the rear concrete patio. The near slab vapor pin was installed to investigate potential for vapor intrusion downgradient from adjacent 145 Gardenia Drive (Formerly 1061 Gardenia Drive). Further details are provided in the *Letter Report Petroleum Vapor Intrusion Investigations – April 2017 through February 2018* (Resolution Consultants, 2018).

The sampling strategy for this phase of the investigation required a one-time sampling event of the vapor pin. The near-slab vapor pin at 145 Gardenia Drive (Formerly 1061 Gardenia Drive) was sampled on April 27, 2017. A soil gas sample was collected and shipped to an offsite laboratory for analysis of the petroleum COPCs. Upon completion of soil gas sampling, the temporary vapor pin was abandoned in accordance with the *UFP SAP for Vapor Media, Revision 4* (Resolution Consultants, 2017). Field forms are provided in the *Letter Report Petroleum Vapor Intrusion Investigations – April 2017 through February 2018* (Resolution Consultants, 2018).

2.6 Soil Gas Analytical Results

A summary of the laboratory analytical results and United States Environmental Protection Agency (USEPA) VISLs is presented in Table 3. A copy of the laboratory analytical data report is included in Appendix D.

The soil gas results collected from 145 Gardenia Drive (Formerly 1061 Gardenia Drive) were below the USEPA VISLs, which indicated that near slab soil gas was not impacted by COPCs associated with the former UST at concentrations that present a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for groundwater, SCDHEC made the determination that NFA was required for 145 Gardenia Drive (Formerly 1061 Gardenia Drive). The NFA determination for groundwater was obtained in letters dated December 18, 2008, August 6, 2015 and June 8, 2016. Based on the analytical results for soil gas, it was determined that there was not a vapor intrusion concern at this property and a recommendation was made for no additional vapor intrusion assessment activities. SCDHEC approved the no further vapor intrusion investigation recommendation for 145 Gardenia Drive (Formerly 1061 Gardenia Drive) in a letter dated August 29, 2018. SCDHEC's letters are provided in Appendix E.

4.0 REFERENCES

- Marine Corps Air Station Beaufort, 2008. *South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report 1061 Gardenia Drive, Laurel Bay Military Housing Area*, January 2008.
- Marine Corps Air Station Beaufort, 2009. *South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report 1061 Gardenia Drive, Laurel Bay Military Housing Area*, August 2009.
- Marine Corps Air Station Beaufort, 2014. *South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report 1061 Gardenia Drive, Laurel Bay Military Housing Area*, March 2014.
- PANDEY Environmental, LLC, 2008. *Investigation of Ground Water at Leaking Heating Oil UST Sites for Laurel Bay Military Housing Area, Multiple Properties, Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina,* November 2008.
- Resolution Consultants, 2015. Initial Groundwater Investigation Report July 2013 for Laurel Bay Military Housing Area, Multiple Properties, Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina, June 2015.
- Resolution Consultants, 2016. Initial Groundwater Investigation Report November and December 2015 for Laurel Bay Military Housing Area, Multiple Properties, Laurel Bay

Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina, April 2016.

- Resolution Consultants, 2017. Uniform Federal Policy Sampling and Analysis Plan for Vapor Media, Revision 4, for Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina, May 2017.
- Resolution Consultants, 2018. Letter Report Petroleum Vapor Intrusion Investigations April 2017 through February 2018for Laurel Bay Military Housing Area, Multiple Properties, Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina, July 2018.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations,* March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.
- South Carolina Department of Health and Environmental Control Bureau of Water, 2016. *R.61-71, Well Standards*, June 2016.
- United States Environmental Protection Agency, 2018. USEPA OSWER Vapor Intrusion Assessment, Vapor Intrusion Screening Level Calculator, May 2018.

Tables

Table 1 Laboratory Analytical Results - Soil 145 Gardenia Drive (Formerly 1061 Gardenia Drive) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

	SCDHEC RBSLs ⁽¹⁾	Results Samples Collected 08/17/07, 06/09/09 and 07/30/13				
Constituent		1061 Gardenia - 01 Bottom 08/17/07	1061 Gardenia - 02 Side 08/17/07	1061 Gardenia 06/09/09	1061-1 Gardenia 07/30/13	
Volatile Organic Compounds An	alyzed by EPA Method 826	0B (mg/kg)				
Benzene	0.007	0.000365	ND	ND	0.0107	
Ethylbenzene	1.15	0.000365	ND	0.0160	3.29	
Naphthalene	0.036	0.00518	ND	0.760	24.2	
Toluene	1.45	0.000813	ND	ND	ND	
Xylenes, Total	14.5	0.00125	ND	ND	3.85	
Semivolatile Organic Compound	ds Analyzed by EPA Method	1 8270 (mg/kg)				
Benzo(a)anthracene	0.066	0.139	ND	ND	ND	
Benzo(b)fluoranthene	0.066	0.0963	ND	ND	ND	
Benzo(k)fluoranthene	0.066	ND	ND	ND	ND	
Chrysene	0.066	0.102	ND	ND	ND	
Dibenz(a,h)anthracene	0.066	ND	ND	ND	ND	

Notes:

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 1.0 (SCDHEC, May 2001).

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligrams per kilogram

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The soil laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

Table 2 Laboratory Analytical Results - Groundwater 145 Gardenia Drive (Formerly 1061 Gardenia Drive) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHFC RBSI s ⁽¹⁾	Site-Specific Groundwater VISLs (µg/L) ⁽²⁾	Results Samples Collected 07/28/08, 07/24/13 and 11/20/15		
			1061 Gardenia A 07/28/08	TW01 07/24/13	TW03 11/20/15
Volatile Organic Compounds Analyze	d by EPA Method 8260B (µg	g/L)	•	•	
Benzene	5	16.24	ND	0.13	ND
Ethylbenzene	700	45.95	ND	3.0	ND
Naphthalene	25	29.33	ND	9.0	0.88
Toluene	1000	105,445	ND	ND	ND
Xylenes, Total	10,000	2,133	ND	0.21	ND
Semivolatile Organic Compounds Ana	alyzed by EPA Method 8270	D (µg/L)			
Benzo(a)anthracene	10	NA	ND	ND	ND
Benzo(b)fluoranthene	10	NA	ND	ND	ND
Benzo(k)fluoranthene	10	NA	ND	ND	ND
Chrysene	10	NA	ND	ND	ND
Dibenz(a,h)anthracene	10	NA	ND	ND	ND

Notes:

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 1.0 (SCDHEC, May 2001).

⁽²⁾ Site-specific groundwater VISLs were calculated using the EPA JE Model Spreadsheets (Version 3.1, February 2004) and conservative modeling inputs representative of a small single-story house with an 8 foot ceiling. Site-specific groundwater VISLs were developed based on a target risk level of 1x10⁻⁶, a target hazard quotient of 1 (per target organ), and a default residential exposure scenario, assuming exposure for 24 hours/day, 350 days/year, for 26 years. Modeling was performed for a range of depths to groundwater for application as appropriate in different areas of the Laurel Bay Military Housing Area. The most conservative levels are presented for comparison. Refer to Appendix H of the Uniform Federal Policy Sampling Analysis and Sampling Plan for Vapor Media, Revision 4 (Resolution Consultants, April 2017) for additional information.

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL and/or the Site-Specific Groundwater VISL.

EPA - United States Environmental Protection Agency

JE - Johnson & Ettinger

NA - not applicable

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The groundwater laboratory report is provided in Appendix C.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control µg/L - micrograms per liter

VISL - Vapor Intrusion Screening Level

Table 3 Laboratory Analytical Results - Vapor 145 Gardenia Drive (Formerly 1061 Gardenia Drive) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	USEPA VISL ⁽¹⁾	Soil Gas Results Sample Collected 04/27/17	
Volatile Organic Compounds Analyzed by USEPA Method TO-15 (µg/m ³)			
Benzene	12	6.5	
Toluene	17000	8.5	
Ethylbenzene	37	1.8	
m,p-Xylenes	350	5.1	
o-Xylene	ene 350		
Naphthalene	2.8	1.0	

Notes:

⁽¹⁾ United States Environmental Protection Agency Exterior Soil Gas Vapor Intrusion Screening Level (VISL) from VISL Calculator (May 2018).

VISLs are based on a residual exposure scenario and a target risk level of 1x10⁻⁶ and a hazard quotient of 0.1. Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the residential VISL.

The vapor laboratory report is provided in Appendix D.

 $\mu g/m^3$ - micrograms per cubic meter

USEPA - United States Environmental Protection Agency

VISL - Vapor Intrusion Screening Level

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Reports

Attachment 1 South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

1.9

Date Received	Only	Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-6240	
I. OWNERSH Bennfort Milin	IP OF UST (S) Lang Complex FR	MILY. HOUSING	
Owner Name (Corporation, Ind.	ividual, Public Agency, Other)		
1510 / AUREN	BAN BRID		
Mailing Address			
BEANFORT	SC	29906	
City C	State.	Zip Code	
843	379-3	3305 Kyle BROAD	Foo
Area Code	Telephone Number	Contact Person	

II. SITE IDENTIFICATION AND LOCATION

N/A Permit I.D. # Actus 1	LEND LEASE	CONSTRUCTION	4
Facility Name or Company Site	dentifier	44 - 4	1 1 1 A
Jold GARDENIA Street Address or State Road (as	applicable)		
BeAufort, SC	29906	Beaufort	
City	ZIP	County	19

13

Attachment 2

III. INSURANCE INFORMATION

Insurance Statement

The petroleum release reported to DHEC on ν/A at Permit ID # <u>may</u> qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. <u>This</u> <u>section must be completed.</u>
Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES NO (check one)
If you answered YES to the above question, please complete the following information:
My policy provider is: The policy deductible is: The policy limit is:
If you have this type of insurance, please include a copy of the policy with this report.
And
I do/do not (circle one) wish to participate in the Superb Program.
IV. CERTIFICATION (To be signed by the UST owner/operator)

I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Name (Type or print.)

Signature To be completed by Notary Public:

Sworn before me this _____ day of _____, 20___.

(Name)

V. UST INFORMATION

. A	Product(ex. Gas, Kerosene)
В.	Capacity(ex. 1k, 2k)
C.	Age
D.	Construction Material(ex. Steel, FRP)
E.	Month/Year of Last Use
F.	Depth (ft.) To Base of Tank
G.	Spill Prevention Equipment Y/N
H.	Overfill Prevention Equipment Y/N
I.	Method of Closure Removed Filled
J.	Date Tanks Removed/Filled
K.	Visible Corrosion or Pitting Y/N
L.	Visible Holes Y/N

Tank 1	Tanl	Tank 3	Tank 4	Tank 5	Tank 6
#2 DIESE					
358g.					
Steel					
72"					
N		-			
N			-		
Chilovea					
-6-7					
<u>,</u>					
У			-		

M. Method of disposal for any USTs removed from the ground (attach disposal manifests)

Recycling - SCRAP Steel

N. Method of disposal for any liquid petroleum, sludges, or wastewaters removed from the USTs (attach disposal manifests)

Republic - BROAdlupst Solidification - Subtitt-ANDFILL

O. If any corrosion, pitting, or holes were observed, describe the location and extent for each UST \underline{TANK} was Filled $\underline{w/o:l + water}$

VI. PIPI 7 INFORMATION

A.	Construction Material(ex. Steel, FRP)
в.	Distance from UST to Dispenser
C.	Number of Dispensers
D.	Type of System Pressure or Suction
E.	Was Piping Removed from the Ground? Y/N
F.	Visible Corrosion or Pitting Y/N
G.	Visible Holes Y/N
H	Age

Tank 1	Tank 2	Tank 3	Tank 4	Tank 5	Tank 6
Steel					
NIA					
-0-					
Electric Pump					
N					
N					
¢					

I. If any corrosion, pitting, or holes were observed, describe the location and extent for each piping run.

VII. BRIEF SITE DESCRIPTION AND HISTORY

Home HEATING OIP TANK - RESIDENTIAL

VIII. SITE CON TIONS

	Yes	No	Unk
 A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map. 		×	18.
 B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells? If yes, indicate location on site map and describe the odor (strong, mild, etc.) 		×	
C. Was water present in the UST excavation, soil borings, or trenches? If yes, how far below land surface (indicate location and depth)?		×	
 D. Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal: 		×	
Was a petroleum sheen or free product detected on any excavation or boring waters? If yes, indicate location and thickness.		x	

IX. SAM E INFORMATION

SCDHEC Lab Certification Number DW: 84009002

Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA #
1	Bottom	5	SANd	72"	8-6-7	M. Jone	ND
2	S:DE	5	SANd	52"	8-6-7	M. Jowes,	ND
3						6	
4							
5							
6			· · · · · · · · · · · · · · · · · · ·				
7							
8							
9							
10							
11							-1
12							
13							
14							
15		-					
16							
17							
18					_		
19							
20							

* = Depth Below the Surrounding Land Surface

А.

SAMPLING METHODOLOC

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

EPA Method 8260 B Volatile ORGANic Compounds PRESERVATIVE: ZEA SODIUM BISUPFATE leA Poly AROMAtic Hydro CARBONS EPA METHOD 8270 PRESERVATIVE NO

ONC IDEWA1 And ONE Sottom SAM were from tANK Secured EVENA A les well AND shipped tone C in ANI Cooled INSURAted ICE w

XI. RECEPTO. 3

-		Yes	No
A	. Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?		
ł	If yes, indicate type of receptor, distance, and direction on site map.	-	*
B.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		
	If yes, indicate type of well, distance, and direction on site map.		1
	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system? If yes, indicate type of structure, distance, and direction on site map.		1
Э.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination?		~
	map.		
	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		1
	If yes, indicate the area of contaminated soil on the site map.		

SUMMARY OF ANALYSIS RESULTS

NIA

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

CoC	SB-1	SB-2	SB-3	SB-4	SB-5	SB-6	SB-7	SB-8
Benzene	1.1	=						
Toluene								
Ethylbenzene	94							
Xylenes								
Naphthalene								
Benzo(a)anthracene								
Benzo(b)flouranthene								
Benzo(k)flouranthene								
Chrysene								
Dibenz(a,h)anthracene								
TPH (EPA 3550)								

CoC	SB-9	SB-10	SB-11	SB-12	SB-13	SB-14	SB-15	SB-16
Benzene								
Toluene					1			
Ethylbenzene								
Xylenes								
Naphthalene								
Benzo(a)anthracene								
Benzo(b)flouranthene								
Benzo(k)flouranthene					÷			
Chrysene								
Dibenz(a,h)anthracene								
ГРН (ЕРА 3550)								

SUMMARY OF ANALYSIS RESULTS (cont'd)

NLA

Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/I)	W-1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
МТВЕ	40				
Naphthalene	25				
Benzo(a)anthracene	10				
Benzo(b)flouranthene	10				
Benzo(k)flouranthene	10				
Chrysene	10				
Dibenz(a,h)anthracen e	10				
EDB	.05				
I,2-DCA	.05				
.ead	Site specific				

		T ₁
	1061	
	A B TANK I BASE 72''	
TANK I EXCAVATION A-SOIL TEST SIDI B-SOIL TEST BO	GARDENIA D <u>ON</u> E SAMPLE @ 52'' TTOM SAMPLE @ 72	RIVE N
stomer : BEAUFORT MILITARY COMPLEX FAMILY HOUSING	SCALE : / G"= '-O" SUPPLIER : FPG_INC	<u>EPG INC.</u> P.0. BOX 1096
· ADDRESS ·		MOUNT DIFACANT CO DOACE 1000

ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Flease see Form #4)

THE LEADER IN ENVIRONMENTAL TESTING

Client: EPG, INC. PO BOX 1096 MT PLEASANT, SC 29465

Attn: JOHN MAHONEY

4310 East Anderson Road Orlando, FL 32812 * 800-851-2560 * Fax 407-856-0886

Work Order: Project: Project Number:

OQH0569 LAUREL BAY r: EP-2362 Sampled: 08/16/07-08/18/07 Received: 08/23/07

LABORATORY REPORT

Sample ID: 1057 GARDENIA SIDE-02 (TANK 1) - Lab Number: OQH0569-02 - Matrix: Solid/Soil

CAS #	Analyte	Result	Q	Units	MDL	PQL	Factor	Analyzed Date/Time	Ву	Method	Batch
Volatile (Organic Compounds by EPA	Method 820	50B - Co	nt.							
91-20-3	Naphthalene	911	RL2	ug/kg dry	20.6	37.2	100	08/29/07 17:25	JWT	EPA 8260B	7H27020
108-88-3	Toluene	32.1	RL2,U	ug/kg dry	32.1	37.2	100	08/29/07 17:25	JWT	EPA 8260B	7H27020
1330-20-7	Xylenes, total	46.9	RL2	ug/kg dry	19.3	37.2	100	08/29/07 17:25	JWT	EPA 8260B	7H27020
Surrogate:	1,2-Dichloroethane-d4 (73-137%)	97 %									
Surrogate: 4	4-Bromofluorobenzene (59-118%)	105 %									
Surrogate: 1	Dibromofluoromethane (55-145%)	99 %									
Surrogate: 1	Toluene-d8 (80-117%)	98 %									
Polynucle	ear Aromatic Hydrocarbons I	by EPA Met	thod 827	0							
33-32-9	Acenaphthene	96.7	U	ug/kg dry	96.7	218	1	09/01/07 03:50	JLS	EPA 8270C	7H27033
208-96-8	Acenaphthylene	128	υ	ug/kg dry	128	218	1	09/01/07 03:50	JLS	EPA 8270C	7H27033
120-12-7	Anthracene	479		ug/kg dry	69.6	218	1	09/01/07 03:50	JLS	EPA 8270C	7H27033
56-55-3	Benzo (a) anthracene	908		ug/kg dry	23.6	218	1	09/01/07 03-50	II.S.	EPA 8270C	7H27033
205-99-2	Benzo (b) fluoranthene	816		ug/kg dry	23.0	218	1	09/01/07 03:50	JLS	EPA 8270C	7H27033
207-08-9	Benzo (k) fluoranthene	183	I	ug/kg dry	23.0	218	1	09/01/07 03:50	JLS	EPA 8270C	7H27033
91-24-2	Benzo (g,h,i) perylene	22.6	U	ug/kg dry	22.6	218	1	09/01/07 03:50	JLS	EPA 8270C	7H27033
50-32-8	Benzo (a) pyrene	396		ug/kg dry	26.9	218	1	09/01/07 03:50	JLS	EPA 8270C	7H27033
0-12-0	1-Methylnaphthalene	110	U	ug/kg dry	110	218	1	09/01/07 03:50	JLS	EPA 8270C	7H27033
18-01-9	Chrysene	560		ug/kg dry	26.1	218	1	09/01/07 03:50	JLS	EPA 8270C	7H27033
3-70-3	Dibenz (a,h) anthracene	28.7	U	ug/kg dry	28.7	218	1	09/01/07 03:50	JLS.	EPA 8270C	7H27033
206-44-0	Fluoranthene	31.4	U	ug/kg dry	31.4	218	1	09/01/07 03:50	JLS	EPA 8270C	7H27033
6-73-7	Fluorene	85.4	U	ug/kg dry	85.4	218	1	09/01/07 03:50	JLS	EPA 8270C	7H27033
93-39-5	Indeno (1,2,3-cd) pyrene	79.3	I	ug/kg dry	28.3	218	1	09/01/07 03:50	ILS	EPA 8270C	7H27033
1-57-6	2-Methylnaphthalene	93.1	υ	ug/kg dry	93.1	218	1	09/01/07 03:50	ΠS	EPA 8270C	7427033
1-20-3	Naphthalene	87.6	U	ug/kg dry	87.6	218	1	09/01/07 03:50	ILS	EPA 8270C	7H27033
5-01-8	Phenanthrene	512		ug/kg dry	51.5	218	1	09/01/07 03:50	ILS	EPA 8270C	7427033
29-00-0	Pyrene	1620		ug/kg drv	44.3	218	1	09/01/07 03:50	ILS	EPA 8270C	71127033
urrogate: 2-	-Fluorobiphenyl (24-121%)	78 %			1.11			05101107 05.50	100	LI A 8270C	/112/035
urrogate: N	litrobenzene-d5 (19-111%)	52 %									
urrogate: To	erphenyl-d14 (44-171%)	118 %									

LABORATORY REPORT

CAS #	Sample ID: 1061 (GARDENIA- Result	BOTT Q	OM 01 - La Units	b Numbe MDL	r: OQH0 PQL	Dil Factor	- Matrix: Sol Analyzed Date/Time	id/Soi By	I Method	Batch
General (Chemistry Parameters	1.5									
IA	% Solids	74.8		%.	0.100	0.100	1	08/24/07 16:05	RRP	EPA 160.3	7H24049
olatile (Organic Compounds by EPA	Method 8260	B								2.20211-0.00100
1-43-2	Benzene	0.365	I	ug/kg dry	0.139	0.380	1	08/28/07 17:21	JWT	EPA 8260B	7H27020
00-41-4	Ethylbenzene	0.365	Т	ug/kg dry	0.161	0.380	1	08/28/07 17:21	JWT	EPA 8260B	7H27020
1-20-3	Naphthalene	5.18		ug/kg dry	0.210	0.380	1	08/28/07 17:21	JWT	EPA 8260B	7H27020
08-88-3	Toluene	0.813		ug/kg dry	0.328	0.380	1	08/28/07 17:21	JWT	EPA 8260B	7H27020
30-20-7	Xylenes, total	1.25		ug/kg dry	0.197	0.380	1	08/28/07 17:21	JWT	EPA 8260B	7H27020
irrogate: 1	,2-Dichloroethane-d4 (73-137%)	118 %		12.12.24				0.000.000		2	

TestAmerica - Orlando, FL Enid Ortiz For Shali Brown Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

4310 East Anderson Road Orlando, FL 32812 * 800-851-2560 * Fax 407-856-0886

Client: EPG, INC. PO BOX 1096

MT PLEASANT, SC 29465

Attn: JOHN MAHONEY

Work Order: Project: Project Number:

OQH0569 LAUREL BAY : EP-2362 Sampled: 08/16/07-08/18/07 Received: 08/23/07

LABORATORY REPORT

Sample ID: 1061 GARDENIA-BOTTOM 01 - Lab Number: OQH0569-03 - Matrix: Solid/Soil

CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
Volatile	Organic Compounds by EPA	Method 826	0B - Co	nt.							
Surrogate.	Dibromofuoromethane (55, 145%)	J7 70	JI								
Surrogate.	Tolugno de (20 1170)	112 70									
Compane.	Chamister Barrater	02 70									
Solids	% Dry Solids	74.8	SPS	%	0.500	0.500	1	08/22/07 16:45	AEB	SW-846	7085830
Polvaron	natic Hydrocarbons by EPA 8	270C						alt out of former			
3-32-9	Acenaphthene	0.0466	U	mg/kg dry	0.0466	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
208-96-8	Acenaphthylene	0.0570	U	mg/kg dry	0.0570	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
120-12-7	Anthracene	0.0786	I	mg/kg dry	0.0518	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
56-55-3	Benzo (a) anthracene	0.139		mg/kg dry	0.0479	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
50-32-8	Benzo (a) pyrene	0.0518	U	mg/kg dry	0.0518	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
205-99-2	Benzo (b) fluoranthene	0.0963		mg/kg drv	0.0492	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
191-24-2	Benzo (g,h,i) perylene	0.0350	U	mg/kg dry	0.0350	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
207-08-9	Benzo (k) fluoranthene	0.0596	U	mg/kg dry	0.0596	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
218-01-9	Chrysene	0.102		mg/kg dry	0.0505	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
53-70-3	Dibenz (a,h) anthracene	0.0337	U	mg/kg dry	0.0337	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
206-44-0	Fluoranthene	0.623		mg/kg dry	0.0544	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
6-73-7	Fluorene	0.0945		mg/kg dry	0.0557	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
93-39-5	Indeno (1,2,3-cd) pyrene	0.0440	U	mg/kg dry	0.0440	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
1-20-3	Naphthalene	0.0518	U	mg/kg dry	0.0518	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
5-01-8	Phenanthrene	0.0907		mg/kg dry	0.0518	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
29-00-0	Pyrene	0.532		mg/kg dry	0.0609	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
0-12-0	1-Methylnaphthalene	0.0466	U	mg/kg dry	0.0466	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
1-57-6	2-Methylnaphthalene	0.0997		mg/kg dry	0.0466	0.0868	1	08/31/07 02:58	RLB	SW846 827	0C7085613
urrogate: 1	[erphenyl-d14 (49-123%)	74 %		0.00							
urrogate: 2	-Fluorobiphenyl (30-93%)	67 %									
urrogate: 1	litrobenzene-d5 (34-87%)	80 %	-								

LABORATORY REPORT

Sample ID: 1061 GARDENIA-SIDE-02 - Lab Number: OQH0569-04 - Matrix: Solid/Soil

S#	Analyte	Result	Q	Units	MDĻ	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
neral Cl	hemistry Parameters										
	% Solids	83.0		%.	0.100	0.100	1	08/24/07 16:05	RRP	EPA 160.3	7H24049
latile Or	rganic Compounds by EPA I	Method 8260)B								
3-2	Benzene	0.106	U	ug/kg dry	0.106	0.290	1	08/28/07 17:01	JWT	EPA 8260B	7H27020
41-4	Ethylbenzene	0.123	U	ug/kg dry	0.123	0.290	1	08/28/07 17:01	JWT	EPA 8260B	7H27020
.0-3	Naphthalene	0.160	U	ug/kg dry	0.160	0.290	1	08/28/07 17:01	JWT	EPA 8260B	7H27020
88-3	Toluene	0.251	• U	ug/kg dry	0.251	0.290	1	08/28/07 17:01	JWT	EPA 8260B	7H27020
)-20-7	Xylenes, total	0.151	U	ug/kg dry	0.151	0.290	1	08/28/07 17:01	JWT	EPA 8260B	7H27020
ogate: 1,2	2-Dichloroethane-d4 (73-137%)	119 %									
ogate: 4-E	Bromofluorobenzene (59-118%)	98 %									
ogate: Dil	bromofluoromethane (55-145%)	106 %									
0-3 88-3)-20-7 ogate: 1,2 ogate: 4-E ogate: Dil	Naphthalene Tolucne Xylenes, total 2-Dichloroethane-d4 (73-137%) Bromofluorobenzene (59-118%) bromofluoromethane (55-145%)	0.160 0.251 0.151 119 % 98 % 106 %	บ - บ บ	ug/kg dry ug/kg dry ug/kg dry	0.160 0.251 0.151	0.290 0.290 0.290	1 1 1	08/28/07 17:01 08/28/07 17:01 08/28/07 17:01	TWT JWT JWT		EPA 8260B EPA 8260B EPA 8260B

THE LEADER IN ENVIRONMENTAL TESTING

4310 East Anderson Road Orlando, FL 32812 * 800-851-2560 * Fax 407-856-0886

Client: EPG, INC. PO BOX 1096 MT PLEASANT, SC 29465 Attn: JOHN MAHONEY

Work Order: Project: Project Number:

OQH0569 LAUREL BAY EP-2362

Sampled: 08/16/07-08/18/07 Received: 08/23/07

LABORATORY REPORT

Sample ID: 1061 GARDENIA-SIDE-02 - Lab Number: OQH0569-04 - Matrix: Solid/Soil

CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	By	Method	Batch
Volatile	Organic Compounds by EP Toluene-d8 (80-117%)	A Method 826 100 %	0B - Co	ont.							
General Solids	Chemistry Parameters	02.0		07	0 500			da da na fili da		0.000	
Deles		03.0	SPS	%	0.500	0.500	1	08/22/07 16:45	AEB	SW-846	7085830
Polyaron 83-32-9	Accenantitiene	A 82/0C		malka day	0.0426	0.0702		00/01/07 07 00			
208-96-8	Acenaphthylene	0.0521	0	mg/kg dry	0.0420	0.0793	1	08/31/07 03:22	RLB	SW846 8270C7085613	
120-12-7	Anthracene	0.0321	0	mg/kg dry	0.0521	0.0793	1	08/31/07 03:22	RLB	SW846 827	0C7085613
56-55-3	Benzo (a) anthracene	0.0475	0	mg/kg dry	0.0473	0.0793	1	08/31/07 03:22	RLB	SW846 827	0C7085613
50-32-8		0.0438	U	mg/kg dry	0.0438	0.0793	1	08/31/07 03:22	RLB	SW846 827	0C7085613
205.00.2	Benzo (b) fuoranthene	0.0473	0	mg/kg dry	0.0473	0.0793	1	08/31/07 03:22	RLB	SW846 827	0C7085613
101 24 2	Benzo (o) moranmene	0.0450	U	mg/kg dry	0.0450	0.0793	1	08/31/07 03:22	RLB	SW846 827	0C7085613
191-24-2	Benzo (g,n,1) perylene	0.0319	U	mg/kg dry	0.0319	0.0793	1	08/31/07 03:22	RLB	SW846 827	0C7085613
207-08-9	Benzo (k) fluoranthene	0.0544	U	mg/kg dry	0.0544	0.0793	1	08/31/07 03:22	RLB	SW846 827	0C7085613
218-01-9	Chrysene	0.0461	U	mg/kg dry	0.0461	0.0793	1	08/31/07 03:22	RLB	SW846 827	0C7085613
53-70-3	Dibenz (a,h) anthracene	0.0308	U	mg/kg dry	0.0308	0.0793	1	08/31/07 03:22	RLB	SW846 827	0C7085613
206-44-0	Fluoranthene	0.0497	U	mg/kg dry	0.0497	0.0793	1	08/31/07 03:22	RLB	SW846 827	0C7085613
36-73-7	Fluorene	0.0509	U	mg/kg dry	0.0509	0.0793	1	08/31/07 03:22	RLB	SW846 827	0C7085613
93-39-5	Indeno (1,2,3-cd) pyrene	0.0402	υ	mg/kg dry	0.0402	0.0793	1	08/31/07 03:22	RLB	SW846 827	0C7085613
1-20-3	Naphthalene	0.0473	U	mg/kg dry	0.0473	0.0793	1	08/31/07 03:22	RLB	SW846 827	0C7085613
5-01-8	Phenanthrene	0.0473	U	mg/kg dry	0.0473	0.0793	1	08/31/07 03:22	RIR	SW846 827	007085613
29-00-0	Pyrene	0.0556	U	mg/kg dry	0.0556	0.0793	1	08/31/07 03:22	RIB	SW/846 827	007085613
0-12-0	1-Methylnaphthalene	0.0426	U	mg/kg dry	0.0426	0.0793	î	08/31/07 03:22	DID	CW/046 027	007005617
1-57-6	2-Methylnaphthalene	0.0426	U	mg/kg dry	0.0426	0.0793	1	08/31/07 03:22	DID	SW040 027	007005(12
urrogate: Terphenyl-d14 (49-123%) 79 %		79 %			0.0120	0.0125	1	08/51/07 05.22	RLD	3 W 040 02 /	JC 7085015
urrogate: 2-Fluorobiphenyl (30-93%)		68 %									
urrogate: Nitrobenzene-d5 (34-87%)		81 %									

LABORATORY REPORT

Sample ID: 1065 GARDENIA-BOTTOM-01 - Lab Number: OQH0569-05 - Matrix: Solid/Soil

CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
Jeneral (Chemistry Parameters			-					_		
IA .	% Solids	82.2		%.	0.100	0.100	1	08/24/07 16:05	RRP	EPA 160.3	7H24049
/olatile (Organic Compounds by EPA	Method 82	60B								111010
1-43-2	Benzene	5.22	RL2,U	ug/kg dry	5.22	14.3	50	08/29/07 17:07	JWT	EPA 8260B	7H27020
00-41-4	Ethylbenzene	6.04	RL2,U	ug/kg dry	6.04	14.3	50	08/29/07 17:07	JWT	EPA 8260B	7H27020
1-20-3	Naphthalene	313	RL2	ug/kg dry	7.88	14.3	50	08/29/07 17:07	JWT	EPA 8260B	7H27020
38-88-3	Toluene	12.3	RL2,U	ug/kg dry	12.3	14.3	50	08/29/07 17:07	JWT	EPA 8260B	7H27020
330-20-7	Xylenes, total	7.41	RL2,U	ug/kg dry	7.41	14.3	50	08/29/07 17:07	IWT	EPA 8260B	7H27020
errogate: 1	,2-Dichloroethane-d4 (73-137%)	94 %							2.112	DITIOLOUD	11121020
errogate: 4-Bromofluorobenzene (59-118%)		105 %									
(rrogate: Dibromofluoromethane (55-145%)		96 %									
vrrogate: Toluene-d8 (80-117%)		97 %									
anonal Chamister Baramatana											

eneral Chemistry Parameters

TestAmerica - Orlando, FL

Enid Ortiz For Shali Brown Project Manager
ANALYTICAL TESTING CORPOR	EPG	-				-		_ (Clien	nt #: _							Cor	nplianc	e Moni	toring	-		
Address:	a la constante da face														Proje	ect Nam	ne: L	AUR	£./_	BA	X		
City/State/Zip Code:											-					Project	#: (5.0-	236	.2	1		
Project Manager:															Site/Lo	cation I	D:					Sta	te:
Telephone Number:		_				. 1	Fax:			-	-			Contraine.	F	eport T	o:)	oh	n	Ma	he	ne	(I
Sampler Name: (Print Name)	LACK	J	ONE	s		-						-			In	voice T	o:		- nel como				
Sampler Signature:	- 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 201		-													Quote	#:				PC	₩ :	
TAT			_	Matrix	Pre	serva	ation	8#0	of Co	ntaine	ers		325.0	0		Ana	lyze Fo	r:		-71 cm 1070 cm		ROLLING COLOR	7
Standard Rush (surcharges may apply) Date Needed:	S S.	= Composite		W - Drinking Water ater S - Soil/Solid ater Specify Other								/	HETH &	230		1	1	1	/ /	/ ,	1	1	QC Deliverab None Level 2 (Batch QC) Level 3
SAMPLE ID	Date Sample	G = Grab, C	Field Filtered	SL - Studge E GW - Grounttw WW - Wastewa	FONH	HCI	NaOH	H2SO4	Methanol	I None	(Anonde) Launo	BTEN	V	8 ##									Level 4 Other:
1057 Gas Dentes Sincer 0	V 7 2.30	2 G	┝─┤		+	-			1	22		*	×	-		-	-			1	1		-61
1061 GARDENIA BOTTI RA	1.7 8:30	6		THE SHOW OF	\vdash	-	-	-	0	22	- 1		*		4	-	-					1	-02
1061 GARDENIA- SIDE-22 95	1.2 8:30	G	-			+		-		2 -	+	-	P 1		+		-		-				-03
1065 GAP DEN: A-BOTTAM BA	0710:0	G	1			+		-+		2 0	1	-	*			+				-		_	-04
1065 GARDENIA-SIDE DZ 8-1	7-07 10:00					+		+		2 2		e	*				1-			+			-65
1141 1Ris - BOTTOM-01 8-1	8.7 9:00	G	1				-			2 0	X	-	×		+			+		-		-	-610
1141 (Ris - SiDE-02 8-	8.7 9:00	G	1		1	+	-		1		X	-	×				-					-	-05
1048 - GARDENIA BOTTON 816	3-7 1:00	G	1			+				12	X	-	*		+	-				+		_	-08
1048-GARDER- SIDE.02 81	87 1:00	G				+		1	1	2 2	12	-1	2	-						1-	+	+	-09_
1057 GARDENIA 1 Refinguisment By: Mahoney	HAD (:	2)	the the	AT	Reca	NG	SI	Pr	ne	ite A	S			8/2	zh		S	LABO	DRATO nit Lab Rec La	DRY CC Temp b Temp	DMMEN	TS:	-10-
Remanisser Allel & KIT	Blzi	67	=17	2/	5	1	-1-			k.	-		-	Date:	51	Time:		Custo	dy Se	als: Y	N	N	VA ·
realinguisticu by:	Date:	101	Time	-11	Recei	ver	By:	-						na.12.	SUA	TICH	(6)	Bottle	as Sup	plied b	y Test	Americ	a: Y N

ANALYTICAL TESTING CORP Client Name	EP	G_							c	lient	#:						Com	pliance	Monito	ring			and the second
Address:		1			75	-								2012	Proje	ct Name	e:	Lau	ire		Bai	4	
City/State/Zip Code:		and substantian design	-	turine con		-		-							F	Project #	t: E	EP.	230	02		1	
Project Manager:	there is a second second	and the second state	or taken on a			-	and the second	nectado a						s	lite/Loc	ation ID):		these from a lightly requester			Stat	ie:
Telephone Number:	umentajii <u>Utana</u> an		-		line and the second sector is a se		. 1	Fax		TOTOMAL		CONTRACTOR	Casellour, process		R	eport To	12:01	shr	n	2021	200	EL	1
Sampler Name: (Print Name)	inc	rcK	1	0	nes	2		-		Could so on					Inv	voice To):						
Sampler Signature:	California Participanta	with the state of the state	Public Martin	-	and the second									-		Quote #	ŀ:				PO#	ł:	
ารัสสาราชาวาร์ เป็นการการการการการการการการการการการการการก			-		Matrix	Pre	Serva	atior	8.#C	of Con	tainen	CASE AND	= 4	<u>)</u>	ng. Indried	Anal	yza Fo	1941 A 2019 PALICO	OIZA MARCE P	SUNCE STATE	250 (1971) (1960) 250 (1971)	INTER OF	ALL THE ALL AND A
Standard Rush (surcharges may apply) Date Needed: Fax Results: Y N	Jate Sampled	ime Sampled	3 = Grab, C = Composite	ieki Filtered	L - Studge DW - Drinking Water W - Grounttwater S - Soil/Solid W - Wastewater Specify Other	NO ₃	Ū	aOH	2SO4	ethanol	ther (Specify)	37	On Hundle Ry	THE STA		//			//		//		QC Deliverat None Level 2 (Betch QC) Level 3 Level 4 Other:
Tan 17, 1057 Government	EU.S	2712	NG		005		I	-Z.	T	2 2	10	X		1	1			-	-				REMARKS
Tank'z 1057 Lawrence	Q. 11.7	7 22	1 m		- The second		-			14	> 7		X	-		+			11) CEN 10229-140528	+	-		1
and a distant interest of the second	Sector white h	a francisco	17			1	Sara araa			1	-	-	$+\sim$	-	1			-		-	адкожаттана 1	Contraction of	
	Development occordination				and the second	T	1		1		-		-	1	1	-	1	-		1			all remains an
METTERLENDATE CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR	Tananania konta parte								1		1		1	1	İ					ar (man overleaster			Contraction of Discourse of the
DEPARTURE AND TO AN OTHER TRADUCTION OF THE ADDRESS	Notion of Street of								Τ		Τ		1						N IS INCOMES		†		N * #20060900-123790 182790414.202
NAMES								-									1		Dis substans	-	1 According		NATE: CONCRETENCES DESCRIPTION
ער אינער מעניינייניינע פאנטאנאייניינייני אינער איייער איינער איייער אייער אייער אייער אייער אייער אייער אייער א	umouraite travel stared							-								and the second s	1			1	Transaction (123)/024		octorion and order of the encourse of California
Construction and a second structure from the grant of the data of the second second second second second second	onternation monthly and	UPERFORT NOR	Land		1		-	-				-	Contraction			T		The list time of the		1			a fur she den an
Special Instructions:					41.1								L	Conversion]					
																		LABC	ORATO	RY CO	WIMENT	'S:	
and the second sec			1									1	1						nit Lap	Temp:		1	
Reindrispacion II a parto	111	8/7	ZA	17	215	9	F	(A)	Ai		1.	1	1	07	7 %	\$17	11	- F	lec Lak	Temp	:51		
John Mappe		Q/m	til	inne:	1-	Red	eived	134	-111	4	CAL	f C	-	Qate.	40	Time.	2	Custo	dy Sea	Is: Y	N	IN	(/A
Roling Cliebell By: LEXK		Belle L	10	time	720	Rece	eived	By	1	/				Dale2	3/03	Time:	30	Bottle	s Supp	lied by	Test A	meric	a: Y N
Deliverial		Carl Ministry Compte	-	DOFADOUS	The second start of the	COMPLEMENTS		on sale or				nituria cintora	Alimetration	Dater	210-3	Time,		86	26	43	311	49	175.(

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Date Received		
	State Use Only	

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

MCAS Beaufort,	Commanding Officer Attn: N	REAO (Craig Ehde)
Owner Name (Corpor	ation, Individual, Public Agency, Other)	
P.O. Box 55001 Mailing Address		
Beaufort,	South Carolina	29904-5001
City	State	Zip Code
843	228-7317	Craig Ehde
Area Code	Telephone Number	Contact Person

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. # Laurel Bay Mili Facility Name or Compa	ary Housing Area, Mar ny Site Identifier	ine Corps Air Station,	Beaufort, SC
<u>1061 Gardenia</u> Street Address or State F	<u>t., Laurel Bay Milita</u> Load (as applicable)	ry Housing Area	
<u>Beaufort</u> , City	<u>Beaufort</u> County		
		4.702.47	V

Attachment 2

٦

III. INSURANCE INFORMATION

Insurance Statement

The periodeum release reported to DHEC on ______ at Permit ID Number _____ may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.

Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES____ NO____ (check one)

If you answered YES to the above question, please complete the following information:

My policy provider is: ______ The policy deductible is: ______ The policy limit is: ______

If you have this type of insurance, please include a copy of the policy with this report.

IV. REQUEST FOR SUPERB FUNDING

I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)

V. CERTIFICATION (To be signed by the UST owner)

I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Name (Type or print.)

Signature

To be completed by Notary Public:

Sworn before me this _____ day of _____, 20

(Name)

Notary Public for the state of ______. Please affix State seal if you are commissioned outside South Carolina

VI. UST INFORMATION

		Gardenia
А.	Product(ex. Gas, Kerosene)	Heating sil
B.	Capacity(ex. 1k, 2k)	280 gal
C.	Age	Late 1950s
D.	Construction Material(ex. Steel, FRP)	Steel
E.	Month/Year of Last Use	Mid 1980s
F.	Depth (ft.) To Base of Tank	5'3"
G.	Spill Prevention Equipment Y/N	No
H.	Overfill Prevention Equipment Y/N	No
I.	Method of Closure Removed/Filled	Removed
J.	Date Tanks Removed/Filled	6/9/09
K.	Visible Corrosion or Pitting Y/N	Yes
L.	Visible Holes Y/N	Yes

1061

M. Method of disposal for any USTs removed from the ground (attach disposal manifests) UST 1061Gardenia was removed from the ground and disposed of at a Subtitle "D" landfill. See Attachment "A."

N. Method of disposal for any liquid petroleum, sludges, or wastewaters removed from the USTs (attach disposal manifests) UST 1061Gardenia had been previously filled with sand by others.

O. If any corrosion, pitting, or holes were observed, describe the location and extent for each UST <u>Corrosion</u>, pitting and holes were found throughout the tank.

VII. PIPING INFORMATION

		1061 Gardenia	
		Steel	
A.	Construction Material(ex. Steel, FRP)	& Copper	_
B.	Distance from UST to Dispenser	N/A	
C.	Number of Dispensers	N/A	
D.	Type of System Pressure or Suction	Suction	
E.	Was Piping Removed from the Ground? Y/N	*Yes	
F.	Visible Corrosion or Pitting Y/N	*Unknown	
G.	Visible Holes Y/N	*Unknown	
H.	Age	Late 1950s	
I.	If any corrosion, pitting, or holes were observed,	describe the location and extent for each piping run.	3

*The copper supply & return piping and the steel vent pipe were previously removed by others.

VIII. BRIEF SITE DESCRIPTION AND HISTORY

The USTs at the residences are constructed of single wall steel and formerly contained fuel oil for heating. These USTs were installed in the late 1950s and last used in the mid 1980s.

IX. SITE CONDITIONS

	Yes	No	Unk
 A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map. 		x	
 B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells? Mild odor noted in excavation. If yes, indicate location on site map and describe the odor (strong, mild, etc.) 	d X		
C. Was water present in the UST excavation, soil borings, or trenches? If yes, how far below land surface (indicate location and depth)?		х	
 D. Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal: 		x	
 E. Was a petroleum sheen or free product detected on any excavation or boring waters? If yes, indicate location and thickness. 		x	

SAMPLE INFORMATION X.

SCDHEC Lab Certification Number _____96012001 Α.

D.

Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA #
1061 Gardenia	Excav at fill end	Soil	Sandy	5'3"	6/9/09 1000 hrs	P. Shaw	
8					1		
9							
10							
11							
12							
13							
14							
15							
16							
17							
18			-				
19							
20							

* = Depth Below the Surrounding Land Surface

XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below

Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC Assessment Guidelines. Sample containers were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Soil samples were extracted from area below tank. The samples were marked, logged, and immediately placed in a sample cooler packed with ice to maintain an approximate temperature of 4 degrees Centigrade. Tools were thoroughly cleaned and decontaminated with the seven step decon process after each use. The samples remained in custody of SBG-EEG, Inc. until they were transferred to Test America Incorporated for analysis as documented in the Chain of Custody Record.

XII. RECEPTORS

		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?	Х	
	If yes, indicate type of receptor, distance, and direction on site map.		
B.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		x
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination?	X*	
	If yes, indicate the type of utility, distance, and direction on the site map.		
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		X
	If yes, indicate the area of contaminated soil on the site map.		

XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

CoC UST	1061Gardenia
Benzene	ND
Toluene	ND
Ethylbenzene	0.0160 mg/kg
Xylenes	ND
Naphthalene	0.760 mg/kg
Benzo (a) anthracene	ND
Benzo (b) fluoranthene	ND
Benzo (k) fluoranthene	ND
Chrysene	ND
Dibenz (a, h) anthracene	ND
TPH (EPA 3550)	
CoC	
Benzene	
Toluene	
Ethylbenzene	
Xylenes	
Naphthalene	
Benzo (a) anthracene	
Benzo (b) fluoranthene	
Benzo (k) fluoranthene	
Chrysene	
Dibenz (a, h) anthracene	
TPH (EPA 3550)	

SUMMARY OF ANALYSIS RESULTS (cont'd) Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	VV-1	W-2	VV -3	VV -4
Free Product Thickness	None				
Benzene	5				
Toluene	1,000	-			
Ethylbenzene	700				
Xylenes	10,000				-
Total BTEX	N/A			1	
МТВЕ	40				
Naphthalene	25		1		
Benzo (a) anthracene	10		11 2 /	·	
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10		1		
Chrysene	10		1	-	
Dibenz (a, h) anthracene	10				
EDB	.05			1	
1,2-DCA	5				
Lead	Site specific		1 1		

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4) **TestAmerica**

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

June 26, 2009	1:41:44PM	

Client: EEG - Small Business Group, Inc. (2449) 10179 Highway 78 Ladson, SC 29456 Attn: Tom McElwee Work Order: Project Name: Project Nbr: P/O Nbr: Date Received: NSF1280 Laurel Bay Housing Project [none] 0829 06/12/09

SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
1061 Gardenia	NSF1280-01	06/09/09 10:00
1062 Gardenia-1	NSF1280-02	06/09/09 15:00
1062 Gardenia-2	NSF1280-03	06/10/09 09:45
1064 Gardenia	NSF1280-04	06/10/09 11:40
1067 Gardenia	NSF1280-05	06/11/09 11:15

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

South Carolina Certification Number: 84009001

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory.

All solids results are reported in wet weight unless specifically stated. Estimated uncertainty is available upon request. This report has been electronically signed. Report Approved By:

Lem & a Hay

Ken A. Hayes Senior Project Manager **TestAmerica**

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

C UI 10 La Attn To	179 Highway 78 adson, SC 29456 om McElwee	- (2 * 16)			Project Name: Project Number: Received:	NOI 1200 Laurel Bay Hou [none] 06/12/09 08:00	sing Project		
				ANALYTICA	L REPORT				
Analyta		D		*T. *4	MDI	Dilution	Analysis Data/Tima	Method	Detah
Analyte	40	Result	Flag	Units	IVINL	Pactor	Date/Time	Witchou	Daten
Sample ID General Ch	emistry Parameters	rdenia - Soil) S	ampled:	06/09/09 10:	00				
% Dry Solids		64.4		%	0.500) 1	06/24/09 09:09	SW-846	9063707
Selected Vo	olatile Organic Compounds	by EPA Method	8260B						
Benzene		ND	50-35 F.B.	me/kg dry	0.0022	25 1	06/16/09 16:53	SW846 8260B	9062143
Ethylbenzene		0.0160		mg/kg dry	0.0022	25 1	06/16/09 16:53	SW846 8260B	9062143
Naphthalene		0.760		mg/kg dry	0.322	2 50	06/18/09 20:36	SW846 8260B	9063105
Toluene		ND		me ke dry	0.0022	25 1	06/16/09 16:53	SW846 8260B	9062143
Xylenes, total	1	ND		mg/kg dry	0.0056	52 1	06/16/09 16:53	SW846 8260B	9062143
Surr: 1.2-Dic	hloroethane-d4 (67-138%)	87 %					06/16/09 16:53	SW846 8260B	9062143
Surr: 1,2-Dici	hloroethane-d4 (67-138%)	100 %					06/18/09 20:36	SW846 8260B	9063105
Surr: Dibrom	ofluoromethane (75-125%)	97 %					06/16/09 16:53	SW846 8260B	9062143
Surr: Dibrom	ofluoromethane (75-125%)	93 %					06/18/09 20:36	SW846 8260B	9063103
Surr: Toluene	e-d8 (76-129%)	136 %	ZX				06/16/09 16:53	SW846 8260B	9062143
Surr: Toluene	e-d8 (76-129%)	97 %					06/18/09 20:36	SW846 8260B	9063105
Surr: 4-Brom	ofluorobenzene (67-147%)	203 %	ZX				06/16/09 16:53	SW846 8260B	9062143
Surr: 4-Brom	ofluorobenzene (67-147%)	103 %					06/18/09 20:36	SW846 8260B	9063105
Polyaromat	ic Hydrocarbons by EPA 82	270D							
Acenaphthene	e	ND		mg/kg dry	0.103	3 1	06/17/09 21:33	SW846 8270D	9062159
Acenaphthyle	ene	ND		mg/kg dry	0.103	3 1	06/17/09 21:33	SW846 8270D	9062159
Anthracene		ND		mg/kg dry	0.103	3 1	06/17/09 21:33	SW846 8270D	9062159
Benzo (a) anti	hracene	ND		mg/kg dry	0.103	3 1	06/17/09 21:33	SW846 8270D	9062159
Benzo (a) pyr	rene	ND		mg/kg dry	0.103	3 1	06/17/09 21:33	SW846 8270D	9062159
Benzo (b) flue	oranthene	ND		mg/kg dry	0.103	3 1	06/17/09 21:33	SW846 8270D	9062159
Benzo (g,h,i)	pervlene	ND		mg/kg dry	0.103	3 1	06/17/09 21:33	SW846 8270D	9062159
Benzo (k) flue	oranthene	ND		mg/kg dry	0.103	3 1	06/17/09 21:33	SW846 8270D	9062159
Chrysene		ND		mg/kg dry	0.103	3 1	06/17/09 21:33	SW846 8270D	9062159
Dibenz (a,h) a	anthracene	ND		mg kg dry	0.103	3 1	06/17/09 21:33	SW846 8270D	9062159
Eluoranthene		ND		mg/kg dry	0.103	3 1	06/17/09 21:33	SW846 8270D	0067150
Fluorene		0.218		mg/kg dry	0.103	s 1	06/17/09 21:33	SW846 8270D	0062150
Indeno (1 2 3	cd) myrene	ND		mg/kg dry	0.10	1	06/17/09 21:33	SW846 8270D	0062159
Maphthalana	-cu) pyrene	0.540		mg/kg ury	0.10		06/17/09 21:33	SW846 8270D	9002139
Phononthrona		0.349		mg kg ury	0.10		06/17/09 21:33	SW040 8270D	9002139
Puesee		0.280		mg/kg dry	0.103		06/17/09 21:33	SW840 8270D	9062159
1 Matheless	thelene			mg/kg dry	0.103		06/17/09 21:33	5 W 840 82/0D	9062159
2 Marthal	unaiene	1.54		mg/kg dry	0.103	5 1	06/17/09 21:33	SW846 8270D	9062159
2-Meinylnaph	inaiene	2.05		mg/kg dry	0.103	5 I	06/17/09 21:33	SW846 8270D	9062159
Surr: Terphen	yl-d14 (18-120%)	87%					06/17/09 21:33	SW846 8270D	9062159
Surr: 2-Fluore	odipnenyi (14-120%)	76 %					06/17/09 21:33	SW846 8270D	9062159
surr: Ivitrober	12ene-as (1/-120%)	/1 %					06/17/09 21:33	SW846 8270D	9062159

NON-HAZARDOJS MANIFEST

Please print or type (Form designed for use on elite (12-pitch), typewriter (CVIAA
NON HAZAPPOLIS MANIFEST	Manifest Document No.	2. Pag	e 1		
		Of a	fect Number		
3. Generator's Name and Malling Address		W	MNA		185473
Laure Bay Housing Besuged SC 29964		B. State	e Generator's ID		
4. Generator's Phone 843 228-8460		-			
5. Transporter 1 Company Name 6. US EPA ID Number		C. State	Transporter's ID		
CEG. Inc.		E State	Transporter's ID		<u>4061 (</u>
		F. Trans	sporter's Phone	-	
9. Designated Facility Name and Site Address 10. US EPA ID Number		G. State	e Facility's ID		
FRECKORY FRI & CONTACT B			-		
ROUTE 1, BOX 121		H. Facili	ity's Phone	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ATA 040
11. Description of Water Materials	12 Con	ainers	13	14	
	No.	Type	Total Quantity	Unit Wt./Vol.	Misc. Comments
atleading OS Tank filled with Sand			1/ 1/2	1.	
WM Profile # \$10065580	0.0.1		14.7~	TN	
E					1-1-1-
Ë b. R					
WM Profile #					
R c.					
				-	
WM Profile #					
d.	1				
WM Profile #	1				
WWITTOILE #		K Die		1200	
J. Additional Descriptions for Materials Listed Above		A. Di	sposal Location		
Landfill Solidification		Cell		Lev	el
Bio Remediation					
	10 -7	Grid	in the	1	
10 EA UST S 2 1050 GARORENVIA - 4)	101		to any Tal	en i	7100117
FROM HOUSO'S 2) 10616 HACKNIN 5	101	×. 17	The states a	i dan i	HEATAR
Purchase Order # 3 1068 baled enn EMERGENCY CONTAC	T: (6)	110	I IR	5	
16. GENERATOR'S CERTIFICATION:	at.				
I hereby certify that the above-described materials are not hazardou	s wastes a	as defi	ned by 40 (CFR Pa	rt 261 or any
applicable state law, have been fully and accurately described, class	ified and	oacka	ged, and ar	e in pro	per condition
for transportation according to applicable regulations.					
Printed/Typed Name Signature "On behalf of	of"				Month Day Year
William A. Drawdy Phil D. K.	1-				11 1 1 1 1 1
T 17. Transporter 1 Acknowledgement of Receipt of Materials					Month Day Yoor
N SIGNATURE Signature					
0 18. Transporter 2 Acknowledgement of Receipt of Materials					
R T Printed/Typed Name Signature					Month Day Year
Ř					
19. Certificate of Final Treatment/Disposal					
I certify, on behalf of the above listed treatment facility, that to the be	est of my k	nowle	dge, the ab	ove-de	scribed waste
was managed in compliance with all applicable laws, regulations, pe	ermits and	licens	es on the d	ates list	ted above.
20. Facitility Owner or Operator: Certification of receipt of non-hazardous materials covered by this materials	anifest.	-			
y Printed/Typed Name	0.001				Month Day Year
Fronk yan comme I TUELS	2165				在位下去几乎
WM - NHM - 1 - 5/97 #2 - CENEDATOR #1 COR	v				

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Date Rece	ved		
	PERCI	ELVED	
	14	L.	-

MAR 1 9 2014

SC DHEC - Burseu of Land & Waste Management Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

MCAS Beaufort, Com	manding Officer Attn: NH	REAO (Craig Ehde)	
P.O. Box 55001	individual, i ubile (receively, other)		
Mailing Address			
Beaufort,	South Carolina	29904-5001	
City	State	Zip Code	
843	228-7317	Craig Ehde	_
Area Code	Telephone Number	Contact Person	

II. SITE IDENTIFICATION AND LOCATION

Permit I D #	
Laurel Bay Military Housing Area, Marine Corps Air Station, Beaufort	, SC
Facility Name or Company Site Identifier	1
1061 Gardenia St., Laurel Bay Military Housing Area	
Street Address or State Road (as applicable)	
Beaufort, Beaufort	
City County	

Attachment 2

III. INSURANCE INFORMATION

Insurance Statement

The petroleum release reported to DHEC on ______ at Permit ID Number ______ may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.

Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES NO (check one)

If you answered **YES** to the above question, please complete the following information:

My policy provider is: ______ The policy deductible is: ______ The policy limit is:

If you have this type of insurance, please include a copy of the policy with this report.

IV. REQUEST FOR SUPERB FUNDING

I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)

V. CERTIFICATION (To be signed by the UST owner)

I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Name (Type or print.)

Signature

To be completed by Notary Public:

Sworn before me this _____ day of _____, 20____

(Name)

Notary Public for the state of ______. Please affix State seal if you are commissioned outside South Carolina

VI. UST INFORMATION

		Gardenia
A٠	Product(ex. Gas, Kerosene)	Heating oil
В.	Capacity(ex. 1k, 2k)	280 gal
C.	Age	Late 1950s
D.	Construction Material(ex. Steel, FRP)	Steel
E-	Month/Year of Last Use	Mid 1980s
F.	Depth (ft.) To Base of Tank	4'4"
G.	Spill Prevention Equipment Y/N	No
H.	Overfill Prevention Equipment Y/N	No
T.	Method of Closure Removed/Filled	Removed
J	Date Tanks Removed/Filled	7/30/2013
K.	Visible Corrosion or Pitting Y/N	Yes
L.	Visible Holes Y/N	Yes

1061-1

M. Method of disposal for any USTs removed from the ground (attach disposal manifests) UST 1061-1Gardenia was removed from the ground and disposed at a Subtitle "D" landfill. See Attachment "A."

N. Method of disposal for any liquid petroleum, sludges, or wastewaters removed from the USTs (attach disposal manifests) UST 1061-1Gardenia had been previously filled with sand by others.

O. If any corrosion, pitting, or holes were observed, describe the location and extent for each UST Corrosion, pitting and holes were found throughout the tank.

VII. PIPING INFORMATION

		1061-1 Gardenia
		Steel
A.	Construction Material(ex. Steel, FRP)	& Copper
B.	Distance from UST to Dispenser	N/A
C.	Number of Dispensers	N/A
D.	Type of System Pressure or Suction	Suction
E.	Was Piping Removed from the Ground? Y/N	No
F.	Visible Corrosion or Pitting Y/N	Yes
G.	Visible Holes Y/N	No
H.	Age	Late 1950s
L	If any corrosion, pitting, or holes were observed,	describe the location and extent for each piping run.

Corrosion and pitting were found on the surface of the steel vent pipe. The copper supply and return lines were sound.

VIII. BRIEF SITE DESCRIPTION AND HISTORY

The USTs at the residences are constructed of single wall steel and formerly contained fuel oil for heating. These USTs were installed in the late 1950s and last used in the mid 1980s.

This is the second tank removed from this residence.

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells?		x	
If yes, indicate depth and location on the site map.			
B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells?		x	
If yes, indicate location on site map and describe the odor (strong, mild, etc.)			_
C. Was water present in the UST excavation, soil borings, or trenches?		x	
If yes, how far below land surface (indicate location and depth)?			
D. Did contaminated soils remain stockpiled on site after closure?		x	
If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal:			
E. Was a petroleum sheen or free product detected on any excavation or boring waters?		x	
If yes, indicate location and thickness.			

IX. SITE CONDITIONS

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

Β.

Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA #
1061-1 Gardenia	Excav at fill end	Soil	Sandy	4'4"	7/30/13 1430 hrs	P. Shaw	
				_			
							_
8							
9					-		
10							
11				1			
12	1.1.1						
13		1.		1			
14							
15							
16							
17							
18							
19		1					
20							

* = Depth Below the Surrounding Land Surface

XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC Assessment Guidelines. Sample containers were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Soil samples were extracted from area below tank. The samples were marked, logged, and immediately placed in a sample cooler packed with ice to maintain an approximate temperature of 4 degrees Centigrade. Tools were thoroughly cleaned and decontaminated with the seven step decon process after each use. The samples remained in custody of SBG-EEG, Inc. until they were transferred to Test America Incorporated for analysis as documented in the Chain of Custody Record.

XII. RECEPTORS

		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?	*X	
	*Broad River & drainage If yes, indicate type of receptor, distance, and direction on site map.	cana	1
B.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		х
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		Х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination? *Sewer, water, electricity	*X	
	cable, fiber optic & of If yes, indicate the type of utility, distance, and direction on the site map.	geothe	ermal
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		X
	If yes, indicate the area of contaminated soil on the site map.		

XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 1061-1Gardenia.

Picture 2: UST 1061-1Gardenia excavation.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

CoC UST	1061-1Gardenia	
Benzene	0.0107 mg/kg	
Toluene	ND	
Ethylbenzene	3.29 mg/kg	
Xylenes	3.85 mg/kg	
Naphthalene	24.2 mg/kg	
Benzo (a) anthracene	ND	
Benzo (b) fluoranthene	ND	
Benzo (k) fluoranthene	ND	
Chrysene	ND	
Dibenz (a, h) anthracene	ND	
TPH (EPA 3550)		
CoC		
Benzene		
Toluene		12
Ethylbenzene		
Xylenes		
Naphthalene		
Benzo (a) anthracene		
Benzo (b) fluoranthene		
Benzo (k) fluoranthene		
Chrysene		
Dibenz (a, h) anthracene		
TPH (EPA 3550)		

SUMMARY OF ANALYSIS RESULTS (cont'd) Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W-1	W-2	W -3	W -4
Free Product Thickness	None	61			
Benzene	5				
Toluene	1,000		1		
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A			1	
МТВЕ	40		1		
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				l anna i
Dibenz (a, h) anthracene	10				
EDB	.05			ſ	
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-32448-1

Client Project/Site: Laurel Bay Housing Project Revision: 1

For:

..... LINKS

Review your project results through

Total Access

Have a Question?

www.testamericainc.com

Visit us at:

Ask

Expert

Small Business Group Inc. 10179 Highway 78 Ladson, South Carolina 29456

Attn: Tom McElwee

Kuth Hay

Authorized for release by: 10/8/2013 3:48:59 PM Ken Hayes, Project Manager I (615)301-5035 ken.hayes@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

5

8

9

10

12

13

Table of Contents

Cover Page	1
Table of Contents 2	2
Sample Summary	3
Case Narrative	ŀ
Definitions	5
Client Sample Results ⁶	5
QC Sample Results)
QC Association	5
Chronicle	7
Method Summary	8
Certification Summary 1	9
Chain of Custody	20
Receipt Checklists 2	22

Sample Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

TestAmerica Job ID: 490-32448-1

3

4

5

9

12

13

Client Sample ID	Matrix	Collected	Received
694 Abelia	Solid	07/29/13 14:45	08/06/13 08:15
1061-1 Gardenia	Solid	07/30/13 14:30	08/06/13 08:15
1429 Albatross	Solid	07/31/13 14:45	08/06/13 08:15
	Client Sample ID 694 Abelia 1061-1 Gardenia 1429 Albatross	Client Sample IDMatrix694 AbeliaSolid1061-1 GardeniaSolid1429 AlbatrossSolid	Client Sample ID Matrix Collected 694 Abelia Solid 07/29/13 14:45 1061-1 Gardenia Solid 07/30/13 14:30 1429 Albatross Solid 07/31/13 14:45

TestAmerica Nashville

TestAmerica Job ID: 490-32448-1

Job ID: 490-32448-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-32448-1

REVISED REPORT: Revised to change the name for sample 490-32448-2 from 1061 Gardenia to 1061-1 Gardenia per client request. This report replaces the one generated on 08/12/13 @ 15:52.

Comments

No additional comments.

Receipt

The samples were received on 8/6/2013 8:15 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was -0.1° C.

GC/MS VOA

Method(s) 8260B: Surrogate recovery for the following sample(s) was outside control limits: 1061 Gardenia (490-32448-2), 1429 Albatross (490-32448-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8260B: Due to sample matrix effect on the internal standard (ISTD), a dilution was required for the following sample(s): 1061 Gardenia (490-32448-2), 1429 Albatross (490-32448-3).

Method(s) 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 98313 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) 8260B: The matrix spike / matrix spike duplicate (MS/MSD) precision for batch 98313 was outside control limits. The associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision met acceptance criteria.

Method(s) 8260B: The following sample(s) was diluted due to the nature of the sample matrix: 1061 Gardenia (490-32448-2), 1429 Albatross (490-32448-3). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 98594.

Method(s) 8260B: The method blank for batch 98594 contained Toluene above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 8270D: The following sample(s) was diluted due to the nature of the sample matrix and internal standard failure of the 1x.: 1061 Gardenia (490-32448-2). Elevated reporting limits (RLs) are provided.

Method(s) 8270D: Surrogate recovery for the following sample(s) was outside control limits: 1061 Gardenia (490-32448-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8270D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 98575 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

Definitions/Glossary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-32448-1

0		:		
	112		\mathbf{o} r	C
9	ua		CI	3

GC/MS VOA	
Qualifier	Qualifier Description
F	MS/MSD Recovery and/or RPD exceeds the control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
x	Surrogate is outside control limits
GC/MS Semi	VOA
Qualifier	Qualifier Description
F	MS/MSD Recovery and/or RPD exceeds the control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
x	Surrogate is outside control limits
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid

CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

TestAmerica Nashville

Client Sample ID: 694 Abelia

Date Collected: 07/29/13 14:45 Date Received: 08/06/13 08:15

Lab Sample ID: 490-32448-1 Matrix: Solid

Percent Solids: 89.3

5

6

8

9 10

12

13

Compounds	(GC/MS)							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.00220	0.000737	mg/Kg	a	08/06/13 14:08	08/07/13 16:44	1
ND		0.00220	0.000737	mg/Kg	a	08/06/13 14:08	08/07/13 16:44	1
ND		0.00550	0.00187	mg/Kg	n	08/06/13 14:08	08/07/13 16:44	1
ND		0.00220	0.000814	mg/Kg	13	08/06/13 14:08	08/07/13 16:44	1
ND		0.00330	0.000737	mg/Kg	ø	08/06/13 14:08	08/07/13 16:44	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
99		70 - 130				08/06/13 14:08	08/07/13 16:44	1
106		70 - 130				08/06/13 14:08	08/07/13 16:44	1
100		70 - 130				08/06/13 14:08	08/07/13 16:44	1
103		70 - 130				08/06/13 14:08	08/07/13 16:44	1
	Compounds (Result ND ND ND ND %Recovery 99 106 100 103	Compounds (GC/MS) Result Qualifier ND ND ND ND ND ND ND ND ND ND	Compounds (GC/MS) Result Qualifier RL ND 0.00220 ND 0.00220 ND 0.00220 ND 0.00220 ND 0.00220 ND 0.00220 ND 0.00330 %Recovery Qualifier Limits 99 70 - 130 106 70 - 130 103 70 - 130	Kesult Qualifier RL MDL ND 0.00220 0.000737 ND 0.00220 0.000737 ND 0.00220 0.000737 ND 0.00550 0.00187 ND 0.00220 0.000814 ND 0.00330 0.000737 %Recovery Qualifier Limits 99 70 - 130 106 70 - 130 100 70 - 130 103 70 - 130	Result Qualifier RL MDL Unit ND 0.00220 0.000737 mg/Kg ND 0.00220 0.000737 mg/Kg ND 0.00550 0.001737 mg/Kg ND 0.00550 0.00187 mg/Kg ND 0.00220 0.000814 mg/Kg ND 0.00330 0.000737 mg/Kg ND 0.00330 0.000737 mg/Kg MD 0.00330 0.000737 mg/Kg 106 70 - 130 100 70 - 130 103 70 - 130 103 70 - 130	Result Qualifier RL MDL Unit D ND 0.00220 0.000737 mg/Kg III ND 0.00220 0.000737 mg/Kg III ND 0.00220 0.000737 mg/Kg III ND 0.00550 0.00187 mg/Kg III ND 0.00220 0.000814 mg/Kg III ND 0.00330 0.000737 mg/Kg III ND 0.00330 0.000737 mg/Kg III %Recovery Qualifier Limits IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Result Qualifier RL MDL Unit D Prepared ND 0.00220 0.000737 mg/Kg III 08/06/13 14:08 ND 0.00220 0.000737 mg/Kg III 08/06/13 14:08 ND 0.00550 0.00187 mg/Kg III 08/06/13 14:08 ND 0.00220 0.000814 mg/Kg IIII 08/06/13 14:08 ND 0.00220 0.000737 mg/Kg IIIIII 08/06/13 14:08 ND 0.00330 0.000737 mg/Kg IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Result Qualifier RL MDL Unit D Prepared Analyzed ND 0.00220 0.000737 mg/Kg III 08/06/13 14:08 08/07/13 16:44 ND 0.00220 0.000737 mg/Kg III 08/06/13 14:08 08/07/13 16:44 ND 0.00220 0.000737 mg/Kg III 08/06/13 14:08 08/07/13 16:44 ND 0.00220 0.000814 mg/Kg III 08/06/13 14:08 08/07/13 16:44 ND 0.00330 0.000737 mg/Kg III 08/06/13 14:08 08/07/13 16:44 ND 0.00330 0.000737 mg/Kg IIII 08/06/13 14:08 08/07/13 16:44 ND 0.00330 0.000737 mg/Kg IIIII 08/06/13 14:08 08/07/13 16:44 MD 0.00330 0.000737 mg/Kg IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0668	0.00998	mg/Kg	Ω.	08/08/13 09:39	08/10/13 00:32	1
Acenaphthylene	ND		0.0668	0.00898	mg/Kg	1	08/08/13 09:39	08/10/13 00:32	1
Anthracene	ND		0.0668	0.00898	mg/Kg	¤	08/08/13 09:39	08/10/13 00:32	1
Benzo[a]anthracene	ND		0.0668	0.0150	mg/Kg	12	08/08/13 09:39	08/10/13 00:32	1
Benzo[a]pyrene	ND		0.0668	0.0120	mg/Kg	12	08/08/13 09:39	08/10/13 00:32	1
Benzo[b]fluoranthene	ND		0.0668	0.0120	mg/Kg	x	08/08/13 09:39	08/10/13 00:32	1
Benzo[g,h,i]perylene	ND		0.0668	0.00898	mg/Kg	ta:	08/08/13 09:39	08/10/13 00:32	1
Benzo[k]fluoranthene	ND		0.0668	0.0140	mg/Kg	522	08/08/13 09:39	08/10/13 00:32	1
1-Methylnaphthalene	ND		0.0668	0.0140	mg/Kg	12	08/08/13 09:39	08/10/13 00:32	1
Pyrene	ND		0.0668	0.0120	mg/Kg	a	08/08/13 09:39	08/10/13 00:32	1
Phenanthrene	ND		0.0668	0.00898	mg/Kg	32	08/08/13 09:39	08/10/13 00:32	1
Chrysene	ND		0.0668	0.00898	mg/Kg	a	08/08/13 09:39	08/10/13 00:32	1
Dibenz(a,h)anthracene	ND		0.0668	0.00698	mg/Kg	a	08/08/13 09:39	08/10/13 00:32	1
Fluoranthene	ND		0.0668	0.00898	mg/Kg	23	08/08/13 09:39	08/10/13 00:32	1
Fluorene	ND		0.0668	0.0120	mg/Kg	a	08/08/13 09:39	08/10/13 00:32	1
Indeno[1,2,3-cd]pyrene	ND		0.0668	0.00998	mg/Kg	a	08/08/13 09:39	08/10/13 00:32	1
Naphthalene	ND		0.0668	0.00898	mg/Kg	a	08/08/13 09:39	08/10/13 00:32	1
2-Methylnaphthalene	ND		0.0668	0.0160	mg/Kg	ä	08/08/13 09:39	08/10/13 00:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	55		29 - 120				08/08/13 09:39	08/10/13 00:32	1
Terphenyl-d14 (Surr)	62		13 - 120				08/08/13 09:39	08/10/13 00:32	1
Nitrobenzene-d5 (Surr)	50		27 - 120				08/08/13 09:39	08/10/13 00:32	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	89		0.10	0.10	%			08/06/13 14:11	1

Client Sample ID: 1061-1 Gardenia

Date Collected: 07/30/13 14:30 Date Received: 08/06/13 08:15

Lab Sample ID: 490-32448-2 Matrix: Solid

Percent Solids: 68.1

4

5 6

Method: 8260B - Volatile Orga	nic Compounds	(GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0107		0.00250	0.000836	mg/Kg	¤	08/06/13 14:08	08/07/13 17:11	1
Ethylbenzene	3.29		0.164	0.0557	mg/Kg	a	08/06/13 14:13	08/08/13 19:58	1
Naphthalene	24.2		0.410	0.139	mg/Kg	¤	08/06/13 14:13	08/08/13 19:58	1
Toluene	ND		0.164	0.0606	mg/Kg	¤	08/06/13 14:13	08/08/13 19:58	1
Xylenes, Total	3.85		0.246	0.0557	mg/Kg	ü	08/06/13 14:13	08/08/13 19:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	125		70 - 130				08/06/13 14:08	08/07/13 17:11	1
1,2-Dichloroethane-d4 (Surr)	98		70 - 130				08/06/13 14:13	08/08/13 19:58	1
4-Bromofluorobenzene (Surr)	1393	x	70 - 130				08/06/13 14:08	08/07/13 17:11	1
4-Bromofluorobenzene (Surr)	114		70 - 130				08/06/13 14:13	08/08/13 19:58	1
Dibromofluoromethane (Surr)	104		70 - 130				08/06/13 14:08	08/07/13 17:11	1
Dibromofluoromethane (Surr)	99		70 - 130				08/06/13 14:13	08/08/13 19:58	1
Toluene-d8 (Surr)	127		70 - 130				08/06/13 14:08	08/07/13 17:11	1
Toluene-d8 (Surr)	95		70 - 130				08/06/13 14:13	08/08/13 19:58	1
Method: 8270D - Semivolatile	Organic Compou	inds (GC/M	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	2.25		0.666	0.0995	mg/Kg	XI.	08/08/13 09:39	08/10/13 19:46	10
Acenaphthylene	0.648	J	0.666	0.0895	mg/Kg	11	08/08/13 09:39	08/10/13 19:46	10

Percent Solids	68		0.10	0.10	%			08/06/13 14:11	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
General Chemistry									
Nitrobenzene-d5 (Surr)	125	x	27 - 120				08/08/13 09:39	08/10/13 19:46	10
Terphenyl-d14 (Surr)	67		13 - 120				08/08/13 09:39	08/10/13 19:46	10
2-Fluorobiphenyl (Surr)	59		29 - 120				08/08/13 09:39	08/10/13 19:46	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	22.2		0.666	0.159	mg/Kg	ä	08/08/13 09:39	08/10/13 19:46	10
Naphthalene	4.79		0.666	0.0895	mg/Kg	a	08/08/13 09:39	08/10/13 19:46	10
Indeno[1,2,3-cd]pyrene	ND		0.666	0.0995	mg/Kg	X	08/08/13 09:39	08/10/13 19:46	10
Fluorene	4.69		0.666	0.119	mg/Kg	a	08/08/13 09:39	08/10/13 19:46	10
Fluoranthene	ND		0.666	0.0895	mg/Kg	32	08/08/13 09:39	08/10/13 19:46	10
Dibenz(a,h)anthracene	ND		0.666	0.0696	mg/Kg	**	08/08/13 09:39	08/10/13 19:46	10
Chrysene	ND		0.666	0.0895	mg/Kg	a	08/08/13 09:39	08/10/13 19:46	10
Phenanthrene	7.01		0.666	0.0895	mg/Kg	ä	08/08/13 09:39	08/10/13 19:46	10
Pyrene	0.556	J	0.666	0.119	mg/Kg	ф.	08/08/13 09:39	08/10/13 19:46	10
1-Methylnaphthalene	21.9		0.666	0.139	mg/Kg	52	08/08/13 09:39	08/10/13 19:46	10
Benzo[k]fluoranthene	ND		0.666	0.139	mg/Kg	±	08/08/13 09:39	08/10/13 19:46	10
Benzo[g,h,i]perylene	ND		0.666	0.0895	mg/Kg	a	08/08/13 09:39	08/10/13 19:46	10
Benzo[b]fluoranthene	ND		0.666	0.119	mg/Kg	a	08/08/13 09:39	08/10/13 19:46	10
Benzo[a]pyrene	ND		0.666	0.119	mg/Kg	12	08/08/13 09:39	08/10/13 19:46	10
Benzo[a]anthracene	ND		0.666	0.149	mg/Kg	**	08/08/13 09:39	08/10/13 19:46	10
Anthracene	0.499	J	0.666	0.0895	mg/Kg	ä	08/08/13 09:39	08/10/13 19:46	10
Acenaphthylene	0.648	J	0.666	0.0895	mg/Kg	22	08/08/13 09:39	08/10/13 19:46	10
Acenaphthene	2.23		0.000	0.0000					

Client Sample ID: 1429 Albatross

Date Collected: 07/31/13 14:45 Date Received: 08/06/13 08:15

Lab Sample ID: 490-32448-3

Matrix: Solid Percent Solids: 79.6

Method: 8260B - Volatile Organic Analyte	Compounds (Result	GC/MS) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00393		0.00201	0.000675	mg/Kg	X	08/06/13 14:08	08/07/13 17:38	1
Ethylbenzene	2.47		0.130	0.0442	mg/Kg	ä	08/06/13 14:13	08/08/13 20:53	1
Naphthalene	19.4		0.325	0.111	mg/Kg	12	08/06/13 14:13	08/08/13 20:53	1
Toluene	ND		0.130	0.0481	mg/Kg	*	08/06/13 14:13	08/08/13 20:53	1
Xylenes, Total	3.90		0.195	0.0442	mg/Kg	ŭ	08/06/13 14:13	08/08/13 20:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	118		70 - 130				08/06/13 14:08	08/07/13 17:38	1
1,2-Dichloroethane-d4 (Surr)	95		70 - 130				08/06/13 14:13	08/08/13 20:53	1
4-Bromofluorobenzene (Surr)	1280	x	70 - 130				08/06/13 14:08	08/07/13 17:38	1
4-Bromofiuorobenzene (Surr)	125		70 - 130				08/06/13 14:13	08/08/13 20:53	1
Dibromofluoromethane (Surr)	103		70 - 130				08/06/13 14:08	08/07/13 17:38	1
Dibromofluoromethane (Surr)	98		70 - 130				08/06/13 14:13	08/08/13 20:53	1
Toluene-d8 (Surr)	120		70 - 130				08/06/13 14:08	08/07/13 17:38	1
Toluene-d8 (Surr)	95		70 - 130				08/06/13 14:13	08/08/13 20:53	1
Method: 8270D - Semivolatile Orc	anic Compou	nds (GC/MS	5)			(+-)			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.957		0.0667	0.00995	mg/Kg	51	08/08/13 09:39	08/10/13 01:18	1
Acenaphthylene	0.283		0.0667	0.00896	mg/Kg	\$	08/08/13 09:39	08/10/13 01:18	1
Anthracene	0.0642	J	0.0667	0.00896	mg/Kg	12	08/08/13 09:39	08/10/13 01:18	1
Benzo[a]anthracene	0.143		0.0667	0.0149	mg/Kg		08/08/13 09:39	08/10/13 01:18	1
Benzo[a]pyrene	0.0636	J	0.0667	0.0119	mg/Kg	ŭ	08/08/13 09:39	08/10/13 01:18	1
Benzolb]fluoranthene	0.104		0.0667	0.0119	mg/Kg	\$	08/08/13 09:39	08/10/13 01:18	1
Benzo(g,h,i)perylene	ND		0.0667	0.00896	mg/Kg	¤	08/08/13 09:39	08/10/13 01:18	1
Benzo[k]fluoranthene	0.0425	J	0.0667	0.0139	mg/Kg	¤	08/08/13 09:39	08/10/13 01:18	1
1-Methylnaphthalene	9.68		0.667	0.139	mg/Kg	a	08/08/13 09:39	08/10/13 20:08	10
Pyrene	0.521		0.0667	0.0119	mg/Kg	¤	08/08/13 09:39	08/10/13 01:18	1
Phenanthrene	3.03		0.0667	0.00896	mg/Kg	¤	08/08/13 09:39	08/10/13 01:18	1
Chrysene	0.176		0.0667	0.00896	mg/Kg	X	08/08/13 09:39	08/10/13 01:18	1
Dibenz(a,h)anthracene	ND		0.0667	0.00697	mg/Kg	¤	08/08/13 09:39	08/10/13 01:18	1
Eluoranthene	0.259		0.0667	0.00896	mg/Kg	a	08/08/13 09:39	08/10/13 01:18	1
Fluorene	1.55		0.0667	0.0119	mg/Kg	¤	08/08/13 09:39	08/10/13 01:18	1
ndeno[1.2.3-cd]pyrene	ND		0.0667	0.00995	mg/Kg	α	08/08/13 09:39	08/10/13 01:18	1
Naphthalene	3.05		0.0667	0.00896	mg/Kg	a	08/08/13 09:39	08/10/13 01:18	1
2-Methylnaphthalene	14.4		0.667	0.159	mg/Kg	a.	08/08/13 09:39	08/10/13 20:08	10
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	57		29 - 120				08/08/13 09:39	08/10/13 01:18	1
Terphenyl-d14 (Surr)	78		13 - 120				08/08/13 09:39	08/10/13 01:18	1
Nitrobenzene-d5 (Surr)	60		27 - 120				08/08/13 09:39	08/10/13 01:18	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	80		0.10	0.10	%			08/06/13 14:11	1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: 490-32175-A-2-D MS
Matrix: Solid
Analysis Ratch: 08313

Analysis Batch: 98313									Prep Batch	: 97356
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		0.0525	0.02165		mg/Kg	n	41	31 - 143	
Ethylbenzene	ND		0.0525	0.007450	F	mg/Kg	¤	14	23 - 161	
Naphthalene	ND		0.0525	0.005081	J	mg/Kg	¤	10	10 - 176	
Toluene	ND		0.0525	0.01517	F	mg/Kg	¤	29	30 - 155	
Xylenes, Total	ND		0.105	0.01480	F	mg/Kg	¤	14	25 - 162	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							

Surrogate	%Recovery	Quaimer	Limits
1,2-Dichloroethane-d4 (Surr)	98		70 - 130
4-Bromofluorobenzene (Surr)	100		70 - 130
Dibromofluoromethane (Surr)	103		70 - 130
Toluene-d8 (Surr)	101		70 - 130

Lab Sample ID: 490-32175-A-2-E MSD Matrix: Solid Analysis Batch: 98313

ranarjene Baterin everte									0/ Dee		DDD
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.0506	0.04685	F	mg/Kg	ü	93	31 - 143	74	50
Ethylbenzene	ND		0.0506	0.04374	F	mg/Kg	¤	86	23 - 161	142	50
Naphthalene	ND		0.0506	0.04500	F	mg/Kg	ä	89	10 - 176	159	50
Toluene	ND		0.0506	0.04463	F	mg/Kg	×	88	30 - 155	99	50
Xylenes, Total	ND		0.101	0.08749	F	mg/Kg	α	86	25 - 162	142	50
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1.2-Dichloroethane-d4 (Surr)	97		70 - 130								

1,2-Dichloroethane-d4 (Surr)	97	70 - 130
4-Bromofluorobenzene (Surr)	100	70 - 130
Dibromofluoromethane (Surr)	103	70 - 130
Toluene-d8 (Surr)	100	70 - 130

Lab Sample ID: MB 490-98313/10 Matrix: Solid

Analysis Batch: 98313

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.000670	mg/Kg			08/07/13 15:14	1
Ethylbenzene	ND		0.00200	0.000670	mg/Kg			08/07/13 15:14	1
Naphthalene	ND		0.00500	0.00170	mg/Kg			08/07/13 15:14	1
Toluene	ND		0.00200	0.000740	mg/Kg			08/07/13 15:14	1
Xylenes, Total	ND		0.00300	0.000670	mg/Kg			08/07/13 15:14	1
	MB	мв							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		70 - 130					08/07/13 15:14	1
4-Bromofluorobenzene (Surr)	99		70 - 130					08/07/13 15:14	1
Dibromofluoromethane (Surr)	100		70 - 130					08/07/13 15:14	1
Toluene-d8 (Surr)	100		70 - 130					08/07/13 15:14	1

TestAmerica Nashville

Client Sample ID: Matrix Spike

Prep Type: Total/NA

5

7

13

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA Prep Batch: 97356

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

6 7 8

9

10

13

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 490-98313/3							Client Sample ID: Lab Control Sa		
Matrix: Solid									Prep Type: Total/NA
Analysis Batch: 98313			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene			0.0500	0.05449		mg/Kg		109	75 - 127
Ethylbenzene			0.0500	0.05635		mg/Kg		113	80 - 134
Naphthalene			0.0500	0.06385		mg/Kg		128	69 - 150
Toluene			0.0500	0.05332		mg/Kg		107	80 - 132
Xylenes, Total			0.100	0.1093		mg/Kg		109	80 - 137
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		70 - 130
4-Bromofluorobenzene (Surr)	98		70 - 130
Dibromofluoromethane (Surr)	102		70 - 130
Toluene-d8 (Surr)	102		70 - 130

Lab Sample ID: LCSD 490-98313/4 Matrix: Solid Analysis Batch: 98313

Limit
Linut
50
50
50
50
50
2 1 1 0 0

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130
Dibromofluoromethane (Surr)	101		70 - 130
Toluene-d8 (Surr)	100		70 - 130

Lab Sample ID: MB 490-98594/9 Matrix: Solid

Analysis Batch: 98594

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.100	0.0340	mg/Kg			08/08/13 14:25	1
Ethylbenzene	ND		0.100	0.0340	mg/Kg			08/08/13 14:25	1
Naphthalene	ND		0.250	0.0850	mg/Kg			08/08/13 14:25	1
Toluene	0.03926	J	0.100	0.0370	mg/Kg			08/08/13 14:25	1
Xylenes, Total	ND		0.150	0.0340	mg/Kg			08/08/13 14:25	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		70 - 130					08/08/13 14:25	1
4-Bromofluorobenzene (Surr)	99		70 - 130					08/08/13 14:25	1
Dibromofluoromethane (Surr)	96		70 - 130					08/08/13 14:25	1
Toluene-d8 (Surr)	101		70 - 130					08/08/13 14:25	1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 490-98594/3							Client Sample ID: Lab Control Sample			
Matrix: Solid									Prep Ty	pe: Total/NA
Analysis Batch: 98594										
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene			0.0500	0.05164		mg/Kg		103	75 - 127	
Ethylbenzene			0.0500	0.05120		mg/Kg		102	80 - 134	
Naphthalene			0.0500	0.05964		mg/Kg		119	69 - 150	
Toluene			0.0500	0.04995		mg/Kg		100	80 - 132	
Xylenes, Total			0.100	0.1018		mg/Kg		102	80 - 137	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							

Surrogate	%Recovery	Quaimer	Limits
1,2-Dichloroethane-d4 (Surr)	99		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130
Dibromofluoromethane (Surr)	104		70 - 130
Toluene-d8 (Surr)	99		70 - 130

Lab Sample ID: LCSD 490-98594/4 Matrix: Solid Analysis Batch: 98594

Toluene-d8 (Surr)

			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.0500	0.05154		mg/Kg		103	75 - 127	0	50
Ethylbenzene			0.0500	0.05225		mg/Kg		105	80 - 134	2	50
Naphthalene			0.0500	0.06293		mg/Kg		126	69 - 150	5	50
Toluene			0.0500	0.04996		mg/Kg		100	80 - 132	0	50
Xylenes, Total			0.100	0.1044		mg/Kg		104	80 - 137	3	50
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	96		70 - 130								
4-Bromofluorobenzene (Surr)	99		70 - 130								
Dibromofluoromethane (Surr)	103		70 - 130								

70 - 130

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

100

Lab Sample ID: MB 490-98575/1-A						Client Sa	mple ID: Metho	d Blank
Matrix: Solid							Prep Type: T	otal/NA
Analysis Batch: 98958							Prep Batch	n: 98575
MB	MB							
Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene ND		0.0670	0.0100	mg/Kg		08/08/13 09:39	08/09/13 17:41	1
Acenaphthylene ND		0.0670	0.00900	mg/Kg		08/08/13 09:39	08/09/13 17:41	1
Anthracene ND		0.0670	0.00900	mg/Kg		08/08/13 09:39	08/09/13 17:41	1
Benzo[a]anthracene ND		0.0670	0.0150	mg/Kg		08/08/13 09:39	08/09/13 17:41	1
Benzo[a]pyrene ND		0.0670	0.0120	mg/Kg		08/08/13 09:39	08/09/13 17:41	1
Benzo[b]fluoranthene ND		0.0670	0.0120	mg/Kg		08/08/13 09:39	08/09/13 17:41	1
Benzo[g,h,i]perylene ND		0.0670	0.00900	mg/Kg		08/08/13 09:39	08/09/13 17:41	1
Benzo[k]fluoranthene ND		0.0670	0.0140	mg/Kg		08/08/13 09:39	08/09/13 17:41	1
1-Methylnaphthalene ND		0.0670	0.0140	mg/Kg		08/08/13 09:39	08/09/13 17:41	1
Pyrene ND		0.0670	0.0120	mg/Kg		08/08/13 09:39	08/09/13 17:41	1
Phenanthrene ND		0.0670	0.00900	mg/Kg		08/08/13 09:39	08/09/13 17:41	1

TestAmerica Nashville

13

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

53

Lab Sample ID: MB 490-98575/1-A Ν

08/09/13 17:41

Prep Type: Total/NA Prep Batch: 98575

Client Sample ID: Lab Control Sample

5

7

9

13

Lab Sample ID: MB 490-98575/1-A							Client Sa	mple ID: Metho	d Blank
Matrix: Solid								Prep Type: T	otal/NA
Analysis Batch: 98958	МВ	мв						Prep Batch	: 98575
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chrysene	ND		0.0670	0.00900	mg/Kg		08/08/13 09:39	08/09/13 17:41	1
Dibenz(a,h)anthracene	ND		0.0670	0.00700	mg/Kg		08/08/13 09:39	08/09/13 17:41	1
Fluoranthene	ND		0.0670	0.00900	mg/Kg		08/08/13 09:39	08/09/13 17:41	1
Fluorene	ND		0.0670	0.0120	mg/Kg		08/08/13 09:39	08/09/13 17:41	1
Indeno[1,2,3-cd]pyrene	ND		0.0670	0.0100	mg/Kg		08/08/13 09:39	08/09/13 17:41	1
Naphthalene	ND		0.0670	0.00900	mg/Kg		08/08/13 09:39	08/09/13 17:41	1
2-Methylnaphthalene	ND		0.0670	0.0160	mg/Kg		08/08/13 09:39	08/09/13 17:41	1
	МВ	мв							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	60		29 - 120				08/08/13 09:39	08/09/13 17:41	1
Terphenyl-d14 (Surr)	69		13 - 120				08/08/13 09:39	08/09/13 17:41	1

Lab Sample ID: LCS 490-98575/2-A Matrix: Solid

Analysis Batch: 98958

Nitrobenzene-d5 (Surr)

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthylene	1.67	1.485		mg/Kg		89	38 - 120	
Anthracene	1.67	1.541		mg/Kg		92	46 - 124	
Benzo[a]anthracene	1.67	1.474		mg/Kg		88	45 - 120	
Benzo[a]pyrene	1.67	1.509		mg/Kg		91	45 - 120	
Benzo[b]fluoranthene	1.67	1.621		mg/Kg		97	42 - 120	
Benzo[g,h,i]perylene	1.67	1.535		mg/Kg		92	38 - 120	
Benzo[k]fluoranthene	1.67	1.490		mg/Kg		89	42 - 120	
1-Methylnaphthalene	1.67	1.353		mg/Kg		81	32 - 120	
Pyrene	1.67	1.522		mg/Kg		91	43 - 120	
Phenanthrene	1.67	1.525		mg/Kg		91	45 - 120	
Chrysene	1.67	1.538		mg/Kg		92	43 - 120	
Dibenz(a,h)anthracene	1.67	1.594		mg/Kg		96	32 - 128	
Fluoranthene	1.67	1.541		mg/Kg		92	46 - 120	
Fluorene	1.67	1.540		mg/Kg		92	42 - 120	
Indeno[1,2,3-cd]pyrene	1.67	1.538		mg/Kg		92	41 - 121	
Naphthalene	1.67	1.261		mg/Kg		76	32 - 120	
2-Methylnaphthalene	1.67	1.346		mg/Kg		81	28 - 120	

27 - 120

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	63		29 - 120
Terphenyl-d14 (Surr)	72		13 - 120
Nitrobenzene-d5 (Surr)	60		27 - 120

Lab Sample ID: 490-32009-A-1-B MS Matrix: Solid

Analysis Batch: 98958									Prep Ba	tch: 98575
and the second second	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthylene	0.0949		1.66	1.172		mg/Kg	ä	65	25 - 120	
Anthracene	0.357		1.66	1.193		mg/Kg	n	50	28 - 125	

TestAmerica Nashville

Prep Type: Total/NA

Client Sample ID: Matrix Spike

08/08/13 09:39

Page 12 of 22

TestAmerica Job ID: 490-32448-1

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

58

Lab Sample ID: 490-32009-A	-1-B MS							Client	Sample ID: Mate	ix Spike
Matrix: Solid									Prep Type:	Total/NA
Analysis Batch: 98958									Prep Batc	h: 98575
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo[a]anthracene	1.00		1.66	1.467		mg/Kg	ä	28	23 - 120	
Benzo[a]pyrene	0.953		1.66	1.526		mg/Kg	n	34	15 - 128	
Benzo[b]fluoranthene	1.38		1.66	1.752		mg/Kg	12	22	12 - 133	
Benzo[g,h,i]perylene	0.604		1.66	1.370		mg/Kg	n	46	22 - 120	
Benzo[k]fluoranthene	0.463		1.66	1.355		mg/Kg	a	54	28 - 120	
1-Methylnaphthalene	0.0342	J	1.66	1.073		mg/Kg	n	62	10 - 120	
Pyrene	2.00		1.66	1.876	F	mg/Kg	¤	-7	20 - 123	
Phenanthrene	1.66		1.66	1.434	F	mg/Kg	n	-14	21 - 122	
Chrysene	0.930		1.66	1.475		mg/Kg	n	33	20 - 120	
Dibenz(a,h)anthracene	0.132		1.66	1.197		mg/Kg	n	64	12 - 128	
Fluoranthene	2.19		1.66	1.634	F	mg/Kg	n	-33	10 - 143	
Fluorene	0.165		1.66	1.160		mg/Kg	13	60	20 - 120	
Indeno[1,2,3-cd]pyrene	0.526		1.66	1.330		mg/Kg	XX	48	22 - 121	
Naphthalene	0.0826		1.66	1.019		mg/Kg	12	56	10 - 120	
2-Methylnaphthalene	0.0368	J	1.66	1.035		mg/Kg		60	13 - 120	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
2-Fluorobiphenyl (Surr)	44		29 - 120							
Terphenyl-d14 (Surr)	59		13 - 120							

27 - 120

Lab Sample ID: 490-32009-A-1-C MSD Matrix: Solid

Analysis Batch: 09059

Nitrobenzene-d5 (Surr)

Analysis Batch: 98958									Prep	Batch:	98575
Analysis Batom secon	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthylene	0.0949		1.65	1.120		mg/Kg	R	62	25 - 120	5	50
Anthracene	0.357		1.65	1.144		mg/Kg	12	48	28 - 125	4	49
Benzo[a]anthracene	1.00		1.65	1.461		mg/Kg	n	28	23 - 120	0	50
Benzo[a]pyrene	0.953		1.65	1.483		mg/Kg	12	32	15 - 128	3	50
Benzo[b]fluoranthene	1.38		1.65	1.702		mg/Kg	\$	19	12 - 133	3	50
Benzo[g,h,i]perylene	0.604		1.65	1.343		mg/Kg	n	45	22 - 120	2	50
Benzo[k]fluoranthene	0.463		1.65	1.373		mg/Kg	ü	55	28 - 120	1	45
1-Methylnaphthalene	0.0342	J	1.65	0.9343		mg/Kg	n	55	10 - 120	14	50
Pyrene	2.00		1.65	1.908	F	mg/Kg	¤	-6	20 - 123	2	50
Phenanthrene	1.66		1.65	1.435	F	mg/Kg	n	-14	21 - 122	0	50
Chrysene	0.930		1.65	1.485		mg/Kg	\$	34	20 - 120	1	49
Dibenz(a,h)anthracene	0.132		1.65	1.279		mg/Kg	n	70	12 - 128	7	50
Fluoranthene	2.19		1.65	1.571	F	mg/Kg	a	-38	10 - 143	4	50
Fluorene	0.165		1.65	1.123		mg/Kg		58	20 - 120	3	50
Indeno[1,2,3-cd]pyrene	0.526		1.65	1.294		mg/Kg	12	47	22 - 121	3	50
Naphthalene	0.0826		1.65	0.9171		mg/Kg	x	51	10 - 120	10	50
2-Methylnaphthalene	0.0368	J	1.65	0.9464		mg/Kg	n	55	13 - 120	9	50
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
2-Fluorobiphenyl (Surr)	37		29 - 120								

37 55 Terphenyl-d14 (Surr)

13 - 120

TestAmerica Nashville

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 490-32009-A- Matrix: Solid Analysis Batch: 98958	1-C MSD			Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA Prep Batch: 98575
Surrogate Nitrobenzene-d5 (Surr)	MSD %Recovery 52	MSD Qualifier	Limits 27 - 120	
Method: Moisture - Perce	nt Moisture			
Lab Sample ID: 490-32275-A	3 DU			Client Sample ID: Duplicate
Analysis Batch: 98019	Sample	Sample		Prep Type: Total/NA

12

13

QC Association Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

GC/MS VOA

Prep Batch: 97356

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-32175-A-2-D MS	Matrix Spike	Total/NA	Solid	5030B	
490-32175-A-2-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5030B	
Prep Batch: 98103					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-32448-1	694 Abelia	Total/NA	Solid	5035	
490-32448-2	1061-1 Gardenia	Total/NA	Solid	5035	
490-32448-3	1429 Albatross	Total/NA	Solid	5035	
Prep Batch: 98105					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-32448-2	1061-1 Gardenia	Total/NA	Solid	5035	
490-32448-3	1429 Albatross	Total/NA	Solid	5035	
Analysis Batch: 98313					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-32175-A-2-D MS	Matrix Spike	Total/NA	Solid	8260B	97356
490-32175-A-2-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B	97356
490-32448-1	694 Abetia	Total/NA	Solid	8260B	98103
490-32448-2	1061-1 Gardenia	Total/NA	Solid	8260B	98103

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

8260B

8260B

8260B

8260B

Method

8260B

8260B

8260B

8260B

8260B

GC/MS Semi VOA

Prep Batch: 98575

490-32448-3

LCS 490-98313/3

LCSD 490-98313/4

MB 490-98313/10

Lab Sample ID

490-32448-2

490-32448-3

LCS 490-98594/3

MB 490-98594/9

LCSD 490-98594/4

Analysis Batch: 98594

1429 Albatross

Lab Control Sample

Client Sample ID

1061-1 Gardenia

Lab Control Sample

Lab Control Sample Dup

1429 Albatross

Method Blank

Lab Control Sample Dup Method Blank

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-32009-A-1-B MS	Matrix Spike	Total/NA	Solid	3550C	
490-32009-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	3550C	
490-32448-1	694 Abelia	Total/NA	Solid	3550C	
490-32448-2	1061-1 Gardenia	Total/NA	Solid	3550C	
490-32448-3	1429 Albatross	Total/NA	Solid	3550C	
LCS 490-98575/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 490-98575/1-A	Method Blank	Total/NA	Solid	3550C	
Analysis Batch: 98958					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-32009-A-1-B MS	Matrix Spike	Total/NA	Solid	8270D	98575
490-32009-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8270D	98575
490-32448-1	694 Abelia	Total/NA	Solid	8270D	98575

TestAmerica Nashville

12

13

98103

Prep Batch 98105

98105

QC Association Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

GC/MS Semi VOA (Continued)

Analysis Batch: 98958 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-32448-3	1429 Albatross	Total/NA	Solid	8270D	98575
LCS 490-98575/2-A	Lab Control Sample	Total/NA	Solid	8270D	98575
MB 490-98575/1-A	Method Blank	Total/NA	Solid	8270D	98575
nalysis Batch: 9913 Lab Sample ID	39 Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
nalysis Batch: 9913 Lab Sample ID 490-32448-2	Client Sample ID 1061-1 Gardenia	Prep Type Total/NA	Matrix Solid	Method 8270D	Prep Batch 98575

General Chemistry

Analysis Batch: 98019

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-32275-A-3 DU	Duplicate	Total/NA	Solid	Moisture	
490-32448-1	694 Abelia	Total/NA	Solid	Moisture	
490-32448-2	1061-1 Gardenia	Total/NA	Solid	Moisture	
490-32448-3	1429 Albatross	Total/NA	Solid	Moisture	

10/8/2013

12

13

TestAmerica Job ID: 490-32448-1

Date Collected: 07/29/13 14:45 aived: 08/06/12 09.45 D

TestAmerica Job ID: 490-32448-1

Lab Sample ID: 490-32448-1

Matrix: Solid Percent Solids: 89.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			98103	08/06/13 14:08	GLN	TAL NSH
Total/NA	Analysis	8260B		1	98313	08/07/13 16:44	МЈН	TAL NSH
Total/NA	Prep	3550C			98575	08/08/13 09:39	JLP	TAL NSH
Total/NA	Analysis	8270D		1	98958	08/10/13 00:32	JLS	TAL NSH
Total/NA	Analysis	Moisture		1	98019	08/06/13 14:11	RRS	TAL NSH

Client Sample ID: 1061-1 Gardenia

Date Collected: 07/30/13 14:30 Date Received: 08/06/13 08:15

Ргер Туре	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			98103	08/06/13 14:08	GLN	TAL NSH
Total/NA	Analysis	8260B		1	98313	08/07/13 17:11	МЈН	TAL NSH
Total/NA	Prep	5035			98105	08/06/13 14:13	GLN	TAL NSH
Total/NA	Analysis	8260B		1	98594	08/08/13 19:58	МЈН	TAL NSH
Total/NA	Prep	3550C			98575	08/08/13 09:39	JLP	TAL NSH
Total/NA	Analysis	8270D		10	99139	08/10/13 19:46	JLS	TAL NSH
Total/NA	Analysis	Moisture		1	98019	08/06/13 14:11	RRS	TAL NSH

Client Sample ID: 1429 Albatross

Date Collected: 07/31/13 14:45 Date Received: 08/06/13 08:15

Lab Sample ID: 490-32448-3

Matrix: Solid Percent Solids: 79.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			98103	08/06/13 14:08	GLN	TAL NSH
Total/NA	Analysis	8260B		1	98313	08/07/13 17:38	MJH	TAL NSH
Total/NA	Prep	5035			98105	08/06/13 14:13	GLN	TAL NSH
Total/NA	Analysis	8260B		1	98594	08/08/13 20:53	MJH	TAL NSH
Total/NA	Analysis	8270D		1	98958	08/10/13 01:18	JLS	TAL NSH
Total/NA	Prep	3550C			98575	08/08/13 09:39	JLP	TAL NSH
Total/NA	Analysis	8270D		10	99139	08/10/13 20:08	JLS	TAL NSH
Total/NA	Analysis	Moisture		1	98019	08/06/13 14:11	RRS	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TestAmerica Job ID: 490-32448-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL NSH
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
Moisture	Percent Moisture	EPA	TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TestAmerica Nashville

TestAmerica Job ID: 490-32448-1

Laboratory: TestAmerica Nashville

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	ISO/IEC 17025		0453.07	12-31-13
AIHA	IHLAP		100790	09-01-13
Alaska (UST)	State Program	10	UST-087	07-24-14
Arizona	State Program	9	AZ0473	05-05-14
Arizona	State Program	9	AZ0473	05-05-14 *
Arkansas DEQ	State Program	6	88-0737	04-25-14
California	NELAP	9	1168CA	10-31-13
Canadian Assoc Lab Accred (CALA)	Canada		3744	03-08-14
Connecticut	State Program	1	PH-0220	12-31-13
lorida	NELAP	4	E87358	06-30-14
linois	NELAP	5	200010	12-09-13
owa	State Program	7	131	05-01-14
ansas	NELAP	7	E-10229	10-31-13
Centucky (UST)	State Program	4	19	06-30-14
ouisiana	NELAP	6	30613	06-30-14
Maryland	State Program	3	316	03-31-14
Massachusetts	State Program	1	M-TN032	06-30-14
linnesota	NELAP	5	047-999-345	12-31-13
lississippi	State Program	4	N/A	06-30-14
Nontana (UST)	State Program	8	NA	01-01-20
levada	State Program	9	TN00032	07-31-14
lew Hampshire	NELAP	1	2963	10-10-14
lew Jersey	NELAP	2	TN965	06-30-14
lew York	NELAP	2	11342	04-01-14
Iorth Carolina DENR	State Program	4	387	12-31-13
North Dakota	State Program	8	R-146	06-30-14
Dhio VAP	State Program	5	CL0033	01-19-14
Oklahoma	State Program	6	9412	08-31-14
Dregon	NELAP	10	TN200001	04-29-14
Pennsylvania	NELAP	3	68-00585	06-30-14
Rhode Island	State Program	1	LAO00268	12-30-13
South Carolina	State Program	4	84009 (001)	02-28-14
ennessee	State Program	4	2008	02-23-14
exas	NELAP	6	T104704077-09-TX	08-31-14
JSDA	Federal		S-48469	11-02-13
Itah	NELAP	8	TN00032	07-31-14
/irginia	NELAP	3	460152	06-14-14
Vashington	State Program	10	C789	07-19-14
Vest Virginia DEP	State Program	3	219	02-28-14
Visconsin	State Program	5	998020430	08-31-14
Wyoming (UST)	A2LA	8	453.07	12-31-13

* Expired certification is currently pending renewal and is considered valid.

TestAmerica Nashville

TestAmerica	Charleston	1
THE LEADER IN ENVIRONMENTAL TESTING Nashville, TN COOLER RECEIPT FORM		
Cooler Received/Opened On 8/6/2013@ 00815	490-32448 Chain of Custody	
1. Tracking # 6143 (last 4 digits, FedEx)		E
Courier: FedEx IR Gun ID 97460373		
2. Temperature of rep. sample or temp blank when opened: Degrees Cels	sius	6
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank fr	rozen? YES NO NA DAC-6-13	
4. Were custody seals on outside of cooler?	TESNONA	•
If yes, how many and where:ONE from	11	0
5. Were the seals intact, signed, and dated correctly?	(YES).NONA	9
6. Were custody papers inside cooler?	YES.NONA	
I certify that I opened the cooler and answered questions 1-6 (intial)		
7. Were custody seals on containers: YES NO and Intact	YESNO	
Were these signed and dated correctly?	YESNO.	12
8. Packing mat'l used? Cubblewrap Plastic bag Peanuts Vermiculite Foam Insert	Paper Other None	T
9. Cooling process: Ice-pack Ice (direct contact)	Dry ice Other None	5
10. Did all containers arrive in good condition (unbroken)?	ESNONA	
11. Were all container labels complete (#, date, signed, pres., etc)?	E. NONA	
12. Did all container labels and tags agree with custody papers?	ERNONA	
13a. Were VOA vials received?	YESNONA	
b. Was there any observable headspace present in any VOA vial?	YES. TONA	
14. Was there a Trip Blank in this cooler? YESØNA If multiple coolers, so	equence #	
certify that I unloaded the cooler and answered guestions 7-14 (intial)	ELA	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH	level? YESNONo	
b. Did the bottle labels indicate that the correct preservatives were used	ESNONA	
16. Was residual chlorine present?	YESNO.	
certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (i	ntial) ELA	
17. Were custody papers properly filled out (ink, signed, etc)?	TESNONA	
18. Did you sign the custody papers in the appropriate place?	E.NONA	
9. Were correct containers used for the analysis requested?	ESNONA	
20. Was sufficient amount of sample sent in each container?	ESNONA	
certify that I entered this project into LIMS and answered guestions 17-20 (intial)	ELA	
certify that I attached a label with the unique LIMS number to each container (intial)	20	
21. Were there Non-Conformance issues at login? YES. NO Was a NCM generated?	YES(0#	-

BIS = Broken in shipment Cooler Receipt Form.doc

Login Sample Receipt Checklist

Client: Small Business Group Inc.

Login Number: 32448 List Number: 1

Creator: Abernathy, Eric

Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> <td></td>	N/A		
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	N/A		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Residual Chlorine Checked.	N/A		

Job Number: 490-32448-1

List Source: TestAmerica Nashville

ATTACHMENT A

1. Generator's L	IS EPA ID No. N	lanifest Doc No.	2. Page 1 c	of			
NON-HAZARDOUS MANIFEST			1	200			
Generator's Mailing Address:	Generator's Site Address (If	different than mailing):	A. Manifes	t Number	01510	101	
AUREL BAY HOUSING EAUFORT, SC 29904				B. State	Generator's I	D	
Generator's Phone 843-879-0411	E LISEDAL	D Number	-			-	
0179 Awy 78	6. US EPAT	lo Number	C. State Tr	ansporter's I	D		
Lo dans Sc 29456			D. Transpo	orter's Phone	84318	19.04	100
Transporter 2 Company Name	8. US EPA I	D Number	E State Tr	ancoartor's l			
		1. (F. Transpo	rter's Phone	0		-
Designated Facility Name and Site Address	10. US EPA	ID Number					
			G. State Fa	acility ID			
DGELAND SC 29936	Malion.	-	H. State Fa	acility Phone	843-98	87-4643	-
56227475, 5625556	peace	1					_
. Description of Waste Materials	913.	Lenny =	13. Total Quantity	14. Unit Wt./Vol.	I. Mis	c. Comments	s
HEATING OIL TANK FILLED WITH SAND	- 110	0 -	0.00	1	19.10	· ····	
	. 1429.		4.93	10N	10	092	_
WM Profile # 1026555		2					
WM Profile #			. C -				
			-				
WM Profile #							
		1 million (1997)					
WM Profile #		1000					
Additional Descriptions for Materials Listed Above		K. Disposal Locatio	n				
		Cell	-		Level		
		Grid	1		Level		
DIOGI GARDENIA	1429 Albi 460 Elde EMERGENCY CO	A + ROSS R BERRY	1 535) 409 E	Eldent	SEREY	16)9 Bai	113 LRA
GENERATOR'S CERTIFICATE: ereby certify that the above-described materials are	not hazardous wastes as defi	ned by 40 CFR Part 26	1 or any applic	able state lav	w, have been	fully and	2
inted Name	Signature "On beh	alf of 1	pplicable regul	ations.	Month	Day	Year
limothy who	iley S	Demoly	y	to see	8	14	1
 Transporter 1 Acknowledgement of Receipt of Mat 	Signature	AST	1		Month	Day	Vear
Printed Name	L)	ARY	1	J	X	14	13
Printed Name PRAH Sha					0.4.10		_
Printed Name Prat H Sha Transporter 2 Acknowledgement of Receipt of Mat	erials				Month	Day	Year
Printed Name Pre A H Sha Transporter 2 Acknowledgement of Receipt of Mat Printed Name	erials Signature	01.	1.4				
Printed Name Prat H Sha Transporter 2 Acknowledgement of Receipt of Mat Printed Name JAMES BAIDWIN	erials Signature	a Paldu					
Printed Name Pre A H Sha Transporter 2 Acknowledgement of Receipt of Mat Printed Name JAMES BALdwind Certificate of Final Treatment/Disposal	erials Signature Jarm	a Palde					
Printed Name Pic A H Sha Transporter 2 Acknowledgement of Receipt of Mat Printed Name JAMES BAIdwid Certificate of Final Treatment/Disposal ertify, on behalf of the above listed treatment facility plicable laws, regulations, permits and licenses on the	, that to the best of my know	a Paldu ledge, the above-descr	ribed waste wa	as managed i	n compliance	with all	
Printed Name Pic A H Sha Transporter 2 Acknowledgement of Receipt of Mat Printed Name JAMES BALDUIN Certificate of Final Treatment/Disposal ertify, on behalf of the above listed treatment facility plicable laws, regulations, permits and licenses on the Facility Owner or Operator: Certification of receipt	, that to the best of my know e dates listed above. of non-hazardous materials of	ledge, the above-descr covered by this manife	ribed waste wa	as managed i	n compliance	with all	
Printed Name Pic A H Sha Transporter 2 Acknowledgement of Receipt of Mat Printed Name SAMES BAIdwind Certificate of Final Treatment/Disposal ertify, on behalf of the above listed treatment facility plicable laws, regulations, permits and licenses on the Facility Owner or Operator: Certification of receipt Printed Name	that to the best of my know dates listed above. of non-hazardous materials of Signature	ledge, the above-description	ribed waste wa st.	as managed i	n compliance Month	with all	Year

Appendix C Laboratory Analytical Reports - Groundwater

1

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: LAUREL BAY SAMPLING 7/28/08

Pace Project No.: 9224472

Sample: 1057 GARDENIA A	Lab ID: 92244	72004	Collected: 07/28/0	8 10:50	Received: 07	/30/08 17:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM SPE	Analytical Metho	d: EPA 82	70 by SIM Preparati	ion Meth	od: EPA 3535			
Nitrobenzene-d5 (S)	56 %		50-150	1	07/31/08 00:00	08/12/08 06:42	4165-60-0	
2-Fluorobiphenyl (S)	64 %		50-150	1	07/31/08 00:00	08/12/08 06:42	321-60-8	
Terphenyl-d14 (S)	99 %		50-150	1	07/31/08 00:00	08/12/08 06:42	1718-51-0	
8260 MSV Low Level	Analytical Metho	d: EPA 82	60					
Benzene	ND ug/L		1.0	1		08/01/08 06:41	71-43-2	
Ethylbenzene	ND ug/L		1.0	1		08/01/08 06:41	100-41-4	
Naphthalene	ND ug/L		1.0	1		08/01/08 06:41	91-20-3	
Toluene	ND ug/L		1.0	1		08/01/08 06:41	108-88-3	
m&p-Xylene	ND ug/L		2.0	1		08/01/08 06:41	1330-20-7	
o-Xylene	ND ug/L		1.0	1		08/01/08 06:41	95-47-6	
4-Bromofluorobenzene (S)	95 %		87-109	1		08/01/08 06:41	460-00-4	
Dibromofluoromethane (S)	103 %		85-115	1		08/01/08 06:41	1868-53-7	
1,2-Dichloroethane-d4 (S)	102 %		79-120	1		08/01/08 06:41	17060-07-0	
Toluene-d8 (S)	101 %		70-120	1		08/01/08 06:41	2037-26-5	
- ()								
Sample: 1061 GARDENIA A	Lab ID: 92244	72005	Collected: 07/28/0	8 11:00	Received: 07	/30/08 17:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM SPE 3510	Analytical Metho	d: EPA 82	70 by SIM Preparat	ion Meth	od: EPA 3510			
Acenaphthene	ND ug/L		2.0	1	07/31/08 00:00	08/12/08 07:05	83-32-9	
Acenaphthylene	ND ug/L		1.5	1	07/31/08 00:00	08/12/08 07:05	208-96-8	
Anthracene	ND ug/L		0.050	1	07/31/08 00:00	08/12/08 07:05	120-12-7	
Benzo(a)anthracene	ND ug/L		0.10	1	07/31/08 00:00	08/12/08 07:05	56-55-3	
Benzo(a)pyrene	ND ug/L		0.20	1	07/31/08 00:00	08/12/08 07:05	50-32-8	
Benzo(b)fluoranthene	ND ug/L		0.30	1	07/31/08 00:00	08/12/08 07:05	205-99-2	
Benzo(a h i)perviene	ND ug/L		0.20	1	07/31/08 00:00	08/12/08 07:05	191-24-2	
Benzo(k)fluoranthene	ND ug/L		0.20	1	07/31/08 00:00	08/12/08 07:05	207-08-9	
Chrysene	ND ug/L		0.20	1	07/31/08 00:00	08/12/08 07:05	218-01-9	
Dibenz(a h)anthracene	ND ug/L		0.10	1	07/31/08 00:00	08/12/08 07:05	53-70-3	
Eluoranthene	ND ug/L		0.20	1	07/31/08 00:00	08/12/08 07:05	206-44-0	
Fluorana	ND ug/L		0.30	1	07/31/08 00:00	08/12/08 07:05	86-73-7	
	ND ug/L		0.31	1	07/31/08 00:00	08/12/08 07:05	103 39-5	
Mdeno(1,2,3-cd)pyrene	ND ug/L		0.20		07/31/08 00:00	08/12/08 07:05	190-09-0	
	ND Ug/L		2.0	1	07/31/08 00:00	08/12/08 07:05	90-12-0	
	ND Ug/L		2.0	1	07/31/08 00:00	08/12/08 07:05	91-57-6	
Naphthalene	ND ug/L		1.5	1	07/31/08 00:00	08/12/08 07:05	91-20-3	
Phenanthrene	ND ug/L		0.20	1	07/31/08 00:00	08/12/08 07:05	85-01-8	
Pyrene	ND ug/L		0.10	1	07/31/08 00:00	08/12/08 07:05	129-00-0	
Nitrobenzene-d5 (S)	66 %		50-150	1	07/31/08 00:00	08/12/08 07:05	4165-60-0	
2-Fluorobiphenyl (S)	73 %		50-150	1	07/31/08 00:00	08/12/08 07:05	321-60-8	
Terphenyl-d14 (S)	99 %		50-150	1	07/31/08 00:00	08/12/08 07:05	1718-51-0	
8260 MSV Low Level	Analytical Metho	d: EPA 82	60					
Benzene	ND ug/L		1.0	1		08/01/08 07:04	71-43-2	

Date: 08/13/2008 05:36 PM

REPORT OF LABORATORY ANALYSIS

Page 8 of 38

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: LAUREL BAY SAMPLING 7/28/08

Pace Project No.: 9224472

Sample: 1061 GARDENIA A	Lab ID: 922	4472005	Collected: 07/28/0	08 11:00	Received: 07	7/30/08 17:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical Met	hod: EPA 82	260					
Ethylbenzene	ND uc	ı/L	1.0	1		08/01/08 07:04	100-41-4	
Naphthalene	ND uc	s/∟ s/L	1.0	1		08/01/08 07:04	91-20-3	
Toluene	ND ug	1/L	1.0	1		08/01/08 07:04	108-88-3	
m&p-Xylene	ND ug	, j/L	2.0	1		08/01/08 07:04	1330-20-7	
o-Xylene	ND ug	, a/L	1.0	1		08/01/08 07:04	95-47-6	
4-Bromofluorobenzene (S)	93 %		87-109	1		08/01/08 07:04	460-00-4	
Dibromofluoromethane (S)	105 %		85-115	1		08/01/08 07:04	1868-53-7	
1,2-Dichloroethane-d4 (S)	105 %		79-120	1		08/01/08 07:04	17060-07-0	
Toluene-d8 (S)	101 %		70-120	1		08/01/08 07:04	2037-26-5	
Sample: 1056 GARDENIA A	Lab ID: 922	4472006	Collected: 07/28/0	08 11:15	Received: 07	7/30/08 17:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM SPE 3510	Analytical Met	hod: EPA 82	270 by SIM Preparat	ion Metl	nod: EPA 3510			
Acenaphthene	ND uc	1/1	20	1	07/31/08 00:00	08/12/08 07:28	83-32-9	
Acenaphthylene	ND up	» − 1/L	1.5	1	07/31/08 00:00	08/12/08 07:28	208-96-8	
Anthracene	ND up).~ 1/L	0.050	1	07/31/08 00:00	08/12/08 07:28	120-12-7	
Benzo(a)anthracene	ND up	ı, ~ ı∕L	0.10	1	07/31/08 00:00	08/12/08 07:28	56-55-3	
Benzo(a)pyrene	ND ug	ı/L	0.20	1	07/31/08 00:00	08/12/08 07:28	50-32-8	
Benzo(b)fluoranthene	ND ug	r – 1/L	0.30	1	07/31/08 00:00	08/12/08 07:28	205-99-2	
Benzo(g,h,i)perylene	ND ug	, 1/L	0.20	1	07/31/08 00:00	08/12/08 07:28	191-24-2	
Benzo(k)fluoranthene	ND ug	/L	0.20	1	07/31/08 00:00	08/12/08 07:28	207-08-9	
Chrysene	ND ug	, J/L	0.10	1	07/31/08 00:00	08/12/08 07:28	218-01-9	
Dibenz(a,h)anthracene	ND ug	1/L	0.20	1	07/31/08 00:00	08/12/08 07:28	53-70-3	
Fluoranthene	ND ug	/L	0.30	1	07/31/08 00:00	08/12/08 07:28	206-44-0	
Fluorene	ND ug	j/L	0.31	1	07/31/08 00:00	08/12/08 07:28	86-73-7	
Indeno(1,2,3-cd)pyrene	ND ug	ı/L	0.20	1	07/31/08 00:00	08/12/08 07:28	193-39-5	
1-Methyinaphthaiene	ND ug	ı/L	2.0	1	07/31/08 00:00	08/12/08 07:28	90-12-0	
2-Methylnaphthalene	ND ug	I/L	2.0	1	07/31/08 00:00	08/12/08 07:28	91-57-6	
Naphthalene	ND ug	I/L	1.5	1	07/31/08 00:00	08/12/08 07:28	91-20-3	
Phenanthrene	ND ug	I/L	0.20	1	07/31/08 00:00	08/12/08 07:28	85-01-8	
Pyrene	ND ug	I/L	0.10	1	07/31/08 00:00	08/12/08 07:28	129-00-0	
Nitrobenzene-d5 (S)	39 %		50-150	1	07/31/08 00:00	08/12/08 07:28	4165-60-0	1g
2-Fluorobiphenyl (S)	51 %		50-150	1	07/31/08 00:00	08/12/08 07:28	321-60-8	
Terphenyl-d14 (S)	70 %		50-150	1	07/31/08 00:00	08/12/08 07:28	1718-51-0	
8260 MSV Low Level	Analytical Mether	hod: EPA 82	60					
Benzene	ND ug	ı/L	1.0	1		08/01/08 07:28	71-43-2	
Ethylbenzene	ND ug	I/L	1.0	1		08/01/08 07:28	100-41-4	
Naphthalene	ND ug	/L	1.0	1		08/01/08 07:28	91-20-3	
Toluene	ND ug	/L	1.0	1		08/01/08 07:28	108-88-3	
m&p-Xylene	ND ug	/L	2.0	1		08/01/08 07:28	1330-20-7	
o-Xylene	ND ug	ı/L	1.0	1		08/01/08 07:28	95-47-6	
4-Bromofluorobenzene (S)	96 %		87-109	1		08/01/08 07:28	460-00-4	

Date: 08/13/2008 05:36 PM

REPORT OF LABORATORY ANALYSIS

Page 9 of 38

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Volatile Organ	nic Compound	ls by GC/MS
----------------	--------------	-------------

Client: AECOM - Re Description: BEALB1061T Date Sampled: 07/24/2013 1 Date Received: 07/25/2013	solution Consultants W01WG20130724 455						Laboratory ID: Matrix:	OG25027- Aqueous	007		
Run Prep Method 1 5030B	Analytical Method 8260B	Dilution 1	Analysis Da 08/02/2013	ate Analyst 1529 ALL	Prep D	Date	Batch 26393				
Parameter			CAS Number	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
Benzene			71-43-2	8260B	0.13	J	0.50	0.25	0.027	ug/L	1
Ethylbenzene		1	00-41-4	8260B	3.0		0.50	0.25	0.17	ug/L	1
Naphthalene			91-20-3	8260B	9.0	В	0.50	0.25	0.12	ug/L	1
Toluene		1	08-88-3	8260B	ND		0.50	0.25	0.17	ug/L	1
Xylenes (total)		13	330-20-7	8260B	0.21	J	0.50	0.25	0.17	ug/L	1
Surrogate	Q	Run 1 % Recove	Acceptar ery Limits	nce							
1,2-Dichloroethane-d4		102	70-12	20							
Toluene-d8		98	85-12	20							
Bromofluorobenzene		109	75-12	20							
Dibromofluoromethane		97	85-11	15							

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 H = Out of holding time
 Q = Surrogate failure

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and >MDL
 P = The RPD between two GC columns exceeds 40%
 N = Recovery is out of criteria
 L = LCS/LCSD failure

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 S = MS/MSD failure

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172 (803) 791-9700Fax (803) 791-9111www.shealylab.com

Level 1 Report v2.1

Semivolatile	Organic	Compounds I	bv	GC/MS
			- J	

Client: AECOM - Res	COM - Resolution Consultants Laboratory ID: OG25027-007										
Description: BEALB1061T	W01WG20130724						Matr	ix: Aqueous			
Date Sampled: 07/24/2013 14	155										
Date Received: 07/25/2013											
Run Prep Method 1 3520C	Analytical Method 8270D	Dilution 1	Analysis D 07/26/2013	ate Analyst 1402 RBH	Prep D 07/25/20	0ate 013 1509	Batch 25843				
Parameter			CAS Number	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
Benzo(a)anthracene			56-55-3	8270D	ND		0.21	0.10	0.085	ug/L	1
Benzo(b)fluoranthene		2	205-99-2	8270D	ND		0.21	0.10	0.091	ug/L	1
Benzo(k)fluoranthene		2	207-08-9	8270D	ND		0.21	0.10	0.096	ug/L	1
Chrysene		:	218-01-9	8270D	ND		0.21	0.10	0.056	ug/L	1
Dibenzo(a,h)anthracene			53-70-3	8270D	ND		0.21	0.10	0.060	ug/L	1
Surrogate	Q	Run 1 % Recov	Accepta ery Limit	ince s							
2-Fluorobiphenyl		75	50-1	10							
Nitrobenzene-d5		80	40-1	10							
Terphenyl-d14		51	50-1	35							

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 H = Out of holding time
 Q = Surrogate failure

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and >MDL
 P = The RPD between two GC columns exceeds 40%
 N = Recovery is out of criteria
 L = LCS/LCSD failure

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 S = MS/MSD failure

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172 (803) 791-9700Fax (803) 791-9111www.shealylab.com

Level 1 Report v2.1

Volatile Organic Compounds by GC/MS

Client: AECOM - Resolution Consultant	S

Description: BEALB1061TW03WG20151120

Laboratory ID: QK20097-011 Matrix: Aqueous

Date Sampled:11/20/2015 1025

Date Received: 11/20/2015											
RunPrep Method15030B	Analytical Metho 8260	od Dilution)B 1	1 Analys	is Date Analyst 015 2138 ALL	Prep	Date	Batch 91002				
Parameter		Nu	CAS Imber	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
Benzene		71	-43-2	8260B	0.45	U	5.0	0.45	0.21	ug/L	1
Ethylbenzene		100)-41-4	8260B	0.51	U	5.0	0.51	0.21	ug/L	1
Naphthalene		91	-20-3	8260B	0.88	BJ	5.0	0.96	0.14	ug/L	1
Toluene		108	3-88-3	8260B	0.48	U	5.0	0.48	0.24	ug/L	1
Xylenes (total)		1330)-20-7	8260B	0.57	U	5.0	0.57	0.32	ug/L	1
Surrogate	Q	Run 1 % Recovery	Accepta / Limi	nce ts							
Bromofluorobenzene		98	75-12	0							
1,2-Dichloroethane-d4		102	70-12	0							
Toluene-d8		103	85-12	0							
Dibromofluoromethane		100	85-11	5							

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeQ = Surrogate failureND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaL = LCS/LCSD failureWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"S = MS/MSD failure

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Client: AECOM - F	Resolution	Consultants
-------------------	------------	-------------

Description: BEALB1061TW03WG20151120

Laboratory ID: QK20097-011 Matrix: Aqueous

Date Sampled:11/20/2015 1025

Date Received: 11/20/2015

RunPrep Method13520C	Analytical Method Dilution 8270D (SIM) 1	n Analy 12/04	ysis Date Analyst /2015 0158 RBH	Prep 11/24/2	Date 015 16	Batch 615 90443				
Parameter	Νι	CAS umber	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
Benzo(a)anthracene	50	6-55-3	8270D (SIM)	0.040	U	0.20	0.040	0.019	ug/L	1
Benzo(b)fluoranthene	205	5-99-2	8270D (SIM)	0.040	U	0.20	0.040	0.019	ug/L	1
Benzo(k)fluoranthene	207	7-08-9	8270D (SIM)	0.040	U	0.20	0.040	0.024	ug/L	1
Chrysene	218	3-01-9	8270D (SIM)	0.040	U	0.20	0.040	0.021	ug/L	1
Dibenzo(a,h)anthracene	53	3-70-3	8270D (SIM)	0.080	U	0.20	0.080	0.040	ug/L	1
Surrogate	Run 1 Q % Recover	Accept y Lir	tance nits							
2-MethyInaphthalene-d10	60	15-1	139							
Fluoranthene-d10	33	23-1	154							

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeQ = Surrogate failureND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaL = LCS/LCSD failureWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"S = MS/MSD failure

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Appendix D Laboratory Analytical Report - Vapor

ALS ENVIRONMENTAL

RESULTS OF ANALYSIS

Page 1 of 1

Client: Client Sample ID: Client Project ID:	AECOM BEALB1061NS01GS20170427 WE56-145 Gardenia Drive / 60342031.FI.WI	ALS Project ID: P1702123 ALS Sample ID: P1702123-001								
Test Code:	EPA TO-15	Date C	Collected:	4/27/17						
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date F	Received:	5/5/17						
Analyst:	Cory Lewis	Date A	Analyzed:	5/8/17						
Sampling Media:	1.0 L Silonite Summa Canister	Volume(s) A	Analyzed:	0.40	Liter(s)					
Test Notes:										
Container ID:	1SS00217									
	Initial Pressure (psig): -0.93	Final Pressure (psig):	5.38							
			Can	ister Diluti	on Factor:	1.46				
CAS #	Compound	Result µg/m ³	LOQ µg/m ³	LOD µg/m ³	MDL µg/m ³	Data Qualifier				
71-43-2	Benzene	6.5	1.8	1.5	0.58					
108-88-3	Toluene	8.5	1.8	1.5	0.62					
100-41-4	Ethylbenzene	1.8	1.8	1.5	0.58	J				
179601-23-1	m,p-Xylenes	5.1	3.7	3.1	1.1					
95-47-6	o-Xylene	1.9	1.8	1.5	0.55					

U = Undetected at the limit of detection: The associated data value is the limit of detection, adjusted by any dilution factor used in the analysis. LOQ = Limit of Quantitation - The minimum quantity of a target analyte that can be confidently determined by the referenced method. J = The result is an estimated concentration that is less than the LOQ but greater than or equal to the MDL.

1.0

1.8

1.6

0.66

J

91-20-3

Naphthalene

Appendix E Regulatory Correspondence

BOARD: Paul C. Aughtry, III Chairman

Edwin H. Cooper, III Vice Chairman

Steven G. Kisner Secretary

BOARD: Henry C. Scott

M. David Mitchell, MD

Glenn A. McCall

Coleman F. Buckhouse, MD

C. Earl Hunter, Commissioner Promoting and protecting the health of the public and the environment

13 August 2008

Beaufort Military Complex Family Housing ATTN: Kyle Broadfoot 1510 Laurel Bay Blvd. Beaufort, SC 29906

Re: MCAS – Laurel Bay Housing – 1061 Gardenia Site ID # 03973 UST Closure Reports received 31 January 2008 Beaufort County

Dear Mr. Broadfoot:

The purpose of this letter is to verify a release of fuel oil at the referenced residence. According to information received by the Department, the source of the release is from past onsite use of fuel oil USTs. To date, initial activities by the facility have included tank removal and soil sampling. Based on the information contained in the closure report, a potential violation of the South Carolina Pollution Control Act has occurred in that there has been an unauthorized release of petroleum to the environment.

Additional assessment activities are required for this site. Specifically the Department requests that a groundwater sample be collected from this site. Please note, the Department approved a groundwater sampling proposal for Laurel Bay submitted by MCAS under separate cover dated 16 June 2008.

Should you have any questions, please contact me at 803-898-3553 (office phone), 803-898-2893 (fax) or <u>bishopma@dhec.sc.gov</u>.

Sincerely,

Michael Bishop, Hydrogeologist Groundwater Quality Section Bureau of Water

cc: Region 8 District EQC (via pdf) MCAS, Commanding Officer, Attention: S-4 NREAO (William Drawdy) (via pdf) Technical File

C. Earl Hunter, Commissioner Promoting and protecting the health of the public and the environment.

18 December 2008

Commanding Officer ATTN: S-4 NREAO (Craig Ehde) MCAS PO Box 55001 Beaufort, SC 29904-5001

MCAS - Laurel Bay Housing - 1061 Gardenia Re: Site ID # 03973 Groundwater Sampling Results received 6 November 2008 Beaufort County

Dear Mr. Ehde:

Per the Department's request, a groundwater sample was collected from the referenced site. The groundwater results were reported as non-detect. Based on the information and analytical data submitted, the Department recognizes that MCAS has adequately addressed the known environmental contamination identified on the property to date in accordance with the approved scope of work. Consequently, no further investigation is required at this time. Please note, this statement pertains only to the portion of the site addressed in the referenced report and does not apply to other areas of the site and/or any other potential regulatory violations. Further, the Department retains the right to request further investigation if deemed necessary.

Should you have any questions, please contact me at 803-896-4179 (office phone), 803-896-6245 (fax) or cookejt@dhec.sc.gov.

Sincerely. **AST Petroleum Restoration** & Site Environmental Investigations Section Land Revitalization Division Bureau of Land and Waste Management SC Dept. of Health & Environmental Control

and Cooke

Jan T. Cooke, Hydrogeologist

B. Thomas Knight, Manager

Region 8 District EQC CC: Tri-Command Communities; Attn: Mr. Robert Bible; 600 Laurel Bay Road Beaufort, SC 29906 **Technical File**

C. Earl Hunter, Commissioner Promoting and protecting the health of the public and the environment.

August 19, 2009

Commanding Officer ATTN: S-4 NREAO (Craig Ehde) MCAS PO Box 55001 Beaufort, SC 29904-5001

Re: MCAS – Laurel Bay Housing – 1061 Gardenia St. **Site ID # 03973** UST Closure Reports received August 17, 2009 Beaufort County

Dear Mr. Ehde:

The purpose of this letter is to verify a release of fuel oil at the referenced residence. According to information received by the Department, the source of the release is from past onsite use of fuel oil USTs. To date, initial activities by the facility have included tank removal and soil sampling. Based on the information contained in the closure report, a potential violation of the South Carolina Pollution Control Act has occurred in that there has been an unauthorized release of petroleum to the environment.

Additional assessment activities are required for this site. Specifically the Department requests that a groundwater sample be collected from this site. Please note, the Department approved a groundwater-sampling proposal for Laurel Bay submitted by MCAS under separate cover dated 16 June 2008.

Should you have any questions, please contact me at 803-896-4179 (office phone), 803-896-6245 (fax) or cookejt@dhec.sc.gov.

Sincerely,

and Cal-

Jan T. Cooke, Hydrogeologist AST Petroleum Restoration & Site Environmental Investigations Section Land Revitalization Division Bureau of Land and Waste Management SC Dept. of Health & Environmental Control

cc: Region 8 District EQC Tri-Command Communities; Attn: Mr. Robert Bible; 600 Laurel Bay Road Beaufort, SC 29906 Technical File

Cutherine E. Heigel, Director Promoting and protecting the health of the public and the environment

> Division of Waste Management Bureau of Land and Waste Management

August 6, 2015

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: Approval Response to Comments and Concurrence with Final Initial Groundwater Investigation Report-July 2013 Laurel Bay Military Housing Area Multiple Properties Dated June 2015

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received groundwater data in the above referenced Groundwater Investigation Report for the addresses attached. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

Per the Department's request, groundwater samples were collected from the attached referenced addresses. The Department reviewed the groundwater data and previous investigations and it agrees with the conclusions and recommendations included in the document. To further assess the impact to groundwater, permanent wells should be installed at the 10 stated addresses. For the remaining 25 addresses, there is no indication of contamination on the property and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

FIRT

Laurel Petrus RCRA Federal Facilities Section

Attachment: Specific Property Recommendations

Cc: Russell Berry, EQC Region 8 (via email) Shawn Dolan, Resolution Consultants (via email) Bryan Beck, NAVFAC MIDATLANTIC (via email) Craig Ehde (via email) Attachment to: Petrus to Drawdy Subject: Draft Final Initial Groundwater Investigation Report-July 2013 Specifice Property Recommendations Dated August 6, 2015

Draft Final Initial Groundwater Investigation Report for (35 addresses/38 tanks)

119 Banyan	156 Laurel Bay
128 Banyan	1033 Foxglove
132 Banyan	1055 Gardenia
135 Birch	1059 Gardenia
148 Laurel Bay	1168 Jasmine
No Furth	er Action recommendation (25 addresses/27 tanks):
115 Banyan	386 Acorn
116 Banyan	395 Acorn
120 Banyan	399 Acorn
124 Banyan	1021 Foxglove
125 Banyan	1027 Foxglove
136 Birch	1030 Foxglove
140 Laurel Bay	1032 Foxglove
144 Laurel Bay	1053 Gardenia
	1058 Gardenia
152 Laurel Bay	
152 Laurel Bay 160 Cypress	1061 Gardenia
152 Laurel Bay 160 Cypress 263 Beech	1061 Gardenia 1166 Jasmine
152 Laurel Bay 160 Cypress 263 Beech 269 Birch	1061 Gardenia 1166 Jasmine 1169 Jasmine

Catherine E. Heigel, Director Promoting and protecting the health of the public and the environment

July 1, 2015

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: IGWA Laurel Bay Underground Storage Tank Assessment Reports for: See attached sheet

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the referenced Underground Storage Tank Assessment Reports for the addresses listed above. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 <u>et seq.</u>, as amended).

The Department has reviewed the referenced assessment reports. The submitted analytical results indicate that petroleum constituents are above established Risk-Based Screening Levels and additional investigation is warranted. Specifically, the Department requests that a groundwater sampling proposal be generated to determine if there has been an impact to groundwater at this site.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at kriegkm@dhec.sc.gov or 803-898-0255.

Sincerely,

that M. They

Kent Krieg Department of Defense Corrective Action Section Bureau of Land and Waste Management South Carolina Department of Health and Environmental Control

Cc: Russell Berry (via email) Craig Ehde (via email) Bryan Beck (via email)

Catherine E. Heigel, Director

Promoting and protecting the health of the public and the environment

Attachment to:

Krieg to Drawdy Subject: IGWA Dated 7/1/2015

Laurel Bay Underground Storage Tank Assessment Reports for: (97 addresses/110 tanks)

118 Banyan	343 Ash Tank 2
126 Banyan	344 Ash Tank 2
127 Banyan	347 Ash Tank 2
130 Banyan Tank 1	378 Aspen Tank 2
141 Laurel Bay	379 Aspen
151 Laurel Bay	382 Aspen Tank 1
224 Cypress	382 Aspen Tank 2
227 Cypress	394 Acorn Tank 2
256 Beech Tank 2	400 Elderberry
257 Beech Tank 1	432 Elderberry
257 Beech Tank 2	436 Elderberry
264 Beech	473 Dogwood Tank 2
265 Beech Tank 2	482 Laurel Bay
265 Beech Tank 3	517 Laurel Bay
275 Birch	586 Aster
277 Birch Tank 1	632 Dahlia
285 Birch	639 Dahlia Tank 2
292 Birch Tank 3	643 Dahlia Tank 1
297 Birch	644 Dahlia Tank 1
301 Ash	644 Dahlia Tank 2
306 Ash	646 Dahlia Tank 1
310 Ash Tank 1	646 Dahlia Tank 2
313 Ash	665 Camellia
315 Ash Tank 2	699 Abelia
316 Ash	744 Blue Bell
319 Ash	745 Blue Bell Tank 1
320 Ash	747 Blue Bell Tank 1
321 Ash	747 Blue Bell Tank 2
329 Ash	747 Blue Bell Tank 3
330 Ash Tank 2	749 Blue Bell Tank 1
331 Ash	749 Blue Bell Tank 2
332 Ash	751 Blue Bell
333 Ash	762 Althea
335 Ash Tank 1	765 Althea Tank 2
335 Ash Tank 2	766 Althea Tank 4
341 Ash	767 Althea Tank 1
342 Ash Tank 1	768 Althea Tank 2
342 Ash Tank 2	768 Althea Tank 3

Laurel Bay Underground Storage Tank Assessment Reports for: (98 addresses/110 tanks) cont.

768 Althea Tank 4	1067 Gardenia
769 Althea Tank 1	1077 Heather
769 Althea Tank 2	1081 Heather
775 Althea	1101 Iris Tank 2
819 Azalea	1104 Iris
840 Azalea	1105 Iris Tank 2
878 Cobia	1124 Iris Tank 2
891 Cobia	1142 Iris Tank 2
913 Barracuda	1146 Iris Tank 2
916 Barracuda	1218 Cardinal
923 Albacore	1240 Dove
1004 Bobwhite	1266 Dove
1022 Foxglove	1292 Eagle
1031 Foxglove	1299 Eagle Tank 1
1034 Foxglove Tank 2	1302 Eagle
1061 Gardenia Tank 3	1336 Albatross
1064 Gardenia	1351 Cardinal

Catherine E. Heigel, Director Promoting and protecting the health of the public and the environment

> Division of Waste Management Bureau of Land and Waste Management

June 8, 2016

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: Approval and Concurrence with Draft Final Initial Groundwater Investigation Report-November and December 2015 Laurel Bay Military Housing Area Multiple Properties Dated April 2015

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received groundwater data in the above referenced Groundwater Investigation Report for the attached addresses on May 2, 2016. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

Per the Department's request, groundwater samples were collected from the attached referenced addresses. The Department reviewed the groundwater data and previous investigations and it agrees with the conclusions and recommendations included in the document. To further assess the impact to groundwater, permanent wells should be installed at the 15 stated addresses. For the remaining 80 addresses, there is no indication of contamination on the property and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

NOT

Laurel Petrus RCRA Federal Facilities Section

Attachment: Specific Property Recommendations

Cc: Russell Berry, EQC Region 8 (via email) Shawn Dolan, Resolution Consultants (via email) Bryan Beck, NAVFAC MIDATLANTIC (via email) Craig Ehde (via email) Attachment to: Petrus to Drawdy

Subject: Draft Final Initial Groundwater Investigation Report-November and December 2015 Specific Property Recommendations Dated June 8, 2016

Draft Final Initial Groundwater Investigation Report for (95 addresses)

Permanent Monitoring Well Investigation recommendation (15 addresses)	
130 Banyan Drive	473 Dogwood Drive
256 Beech Street	747 Blue Bell Lane
285 Birch Drive	749 Blue Bell Lane
292 Birch Drive	775 Althea Street
330 Ash Street	1034 Foxglove Street
331 Ash Street	1104 Iris Lane
335 Ash Street	1124 Iris Lane
342 Ash Street	
t in the second s	
1.0	

No Further Action recommendation (80 addresses)		
118 Banyan Drive	644 Dahlia Drive	
126 Banyan Drive	646 Dahlia Drive	
127 Banyan Drive	665 Camellia Drive	
141 Laurel Bay Blvd	699 Abelia Street	
151 Laurel Bay Blvd	744 Blue Bell Lane	
224 Cypress Street	745 Blue Bell Lane	
227 Cypress Street	751 Blue Bell Lane	
257 Beech Street	762 Althea Street	
264 Beech Street	765 Althea Street	
265 Beech Street	766 Althea Street	
275 Birch Drive	767 Althea Street	
277 Birch Drive	768 Althea Street	
297 Birch Drive	769 Althea Street	
301 Ash Street	819 Azalea Drive	
306 Ash Street	840 Azalea Drive	
310 Ash Street	878 Cobia Drive	
313 Ash Street	891 Cobia Drive	
315 Ash Street	913 Barracuda Drive	
316 Ash Street	916 Barracuda Drive	
319 Ash Street	923 Wren Lane	
320 Ash Street	1004 Bobwhite Drive	
321 Ash Street	1022 Foxglove Street	
329 Ash Street	1031 Foxglove Street	
332 Ash Street	1061 Gardenia Drive	
333 Ash Street	1064 Gardenia Drive	
341 Ash Street	1067 Gardenia Drive	
347 Ash Street	1077 Heather Street	
378 Aspen Street	1081 Heather Street	
379 Aspen Street	1101 Iris Lane	
382 Aspen Street	1105 Iris Lane	
394 Acorn Street	1142 Iris Lane	
400 Elderberry Drive	1146 Iris Lane	
432 Elderberry Drive	1218 Cardinal Lane	
436 Elderberry Drive	1240 Dove Lane	
482 Laurel Bay Blvd	1266 Dove Lane	
517 Laurel Bay Blvd	1292 Eagle Lane	
586 Aster Street	1299 Eagle Lane	
632 Dahlia Drive	1302 Eagle Lane	
639 Dahlia Drive	1336 Albatross Drive	
643 Dahlia Drive	1351 Cardinal Lane	

Attachment to: Petrus to Drawdy Subject: Draft Final Initial Groundwater Investigation Report-November and December 2015 Specific Property Recommendations Dated June 8, 2016, Page 2

August 29, 2018

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: Approval Draft Final Letter Report-Petroleum Vapor Intrusion Investigations April 2017 through February 2018 Laurel Bay Military Housing Area

Dear Mr. Drawdy:

The South Carolina Department of Health and Environmental Control (DHEC) received the Vapor Intrusion Investigation Report for multiple properties on July 30, 2018. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

DHEC has reviewed the Investigation Report and based on this review, DHEC did not generate any comments on the report. Please note that DHEC's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, DHEC retains the right to request further investigation if deemed necessary. If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

Tues of Petrus

Laurel Petrus, Environmental Engineer Associate Bureau of Land and Waste Management

Cc: EQC Region 8 Shawn Dolan, Resolution Consultants Bryan Beck, NAVFAC MIDLANT